Research Database
Displaying 1 - 20 of 134
Wildfires drive multi-year water quality degradation over the western United States
Year: 2025
Wildfires can dramatically alter water quality, resulting in severe implications for human and freshwater systems. However, regional-scale assessments of these impacts are often limited by data scarcity. Here, we unify observations from 1984–2021 in 245 burned watersheds across the western United States, comparing post-fire signals to baseline levels from 293 unburned basins. Organic carbon and phosphorus exhibit significantly elevated levels (p ≤ 0.05) in the first 1–5 years post-fire, while nitrogen and sediment show significant increases up to 8 years post-fire. During peak post-…
Publication Type: Journal Article
Reliability of satellite-based vegetation maps for planning wildfire-fuel treatments in shrub steppe: Inferences from two contrasting national parks
Year: 2025
Protecting habitat threatened by increasing wildfire size and frequency requires identifying the spatial intersection of wildfire behavior and ecological conditions that favor positive management outcomes. In the perennial sagebrush steppe of Western North America, invasions by fire-prone annual grasses are a key concern, and management of them requires reliable maps of vegetation cover, fuels, and wildfire behavior. We compared commonly used, publicly available vegetation cover and fuels maps, specifically the Rangeland Analysis Platform (RAP) and LANDFIRE, with field-based assessments at…
Publication Type: Journal Article
Extreme Fire Spread Events Burn More Severely and Homogenize Postfire Landscapes in the Southwestern United States
Year: 2025
Extreme fire spread events rapidly burn large areas with disproportionate impacts on people and ecosystems. Such events are associated with warmer and drier fire seasons and are expected to increase in the future. Our understanding of the landscape outcomes of extreme events is limited, particularly regarding whether they burn more severely or produce spatial patterns less conducive to ecosystem recovery. To assess relationships between fire spread rates and landscape burn severity patterns, we used satellite fire detections to create day‐of‐burning maps for 623 fires comprising 4267 single‐…
Publication Type: Journal Article
Quantifying Western US tree carbon stocks and sequestration from fires
Year: 2025
Background: Forest ecosystems function as the largest terrestrial carbon sink globally. In the Western US, fires play a crucial role in modifying forest carbon storage, sequestration capacity, and the transfer of carbon from live to dead carbon pools. We utilized remeasurements of more than 700,000 trees from 24,000 locations from the US Department of Agriculture Forest Service’s Forest Inventory and Analysis program (FIA) and incorporated supplementary information on wildfires from the Monitoring Trends in Burn Severity dataset. These datasets allowed us to develop models that examined the…
Publication Type: Journal Article
Mobile radar provides insights into hydrologic responses in burn areas
Year: 2025
Background. Wildfires often occur in mountainous terrain, regions that pose substantial challenges to operational meteorological and hydrologic observing networks. Aims. A mobile, postfire hydrometeorological observatory comprising remote-sensing and in situ instrumentation was developed and deployed in a burnt area to provide unique insights into rainfall-induced post-fire hazards. Methods. Mobile radar-based rainfall estimates were produced throughout the burn area at 75-m resolution and compared with rain gauge accumulations and basin response variables. Key results. The mobile radar was…
Publication Type: Journal Article
Enhancing fire emissions inventories for acute health effects studies: integrating high spatial and temporal resolution data
Year: 2025
Background: Daily fire progression information is crucial for public health studies that examine the relationship between population-level smoke exposures and subsequent health events. Issues with remote sensing used in fire emissions inventories (FEI) lead to the possibility of missed exposures that impact the results of acute health effects studies.Aims: This paper provides a method for improving an FEI dataset with readily available information to create a more robust dataset with daily fire progression.Methods: High temporal and spatial…
Publication Type: Journal Article
Going slow to go fast: landscape designs to achieve multiple benefits
Year: 2025
Introduction: Growing concerns about fire across the western United States, and commensurate emphasis on treating expansive areas over the next 2 decades, have created a need to develop tools for managers to assess management benefits and impacts across spatial scales. We modeled outcomes associated with two common forest management objectives: fire risk reduction (fire), and enhancing multiple resource benefits (ecosystem resilience).Method: We evaluated the compatibility of these two objectives across ca. 1-million ha in the central Sierra Nevada,…
Publication Type: Journal Article
Post-fire delayed tree mortality in mesic coniferous forests reduces fire refugia and seed sources
Year: 2025
Context: Ecological functions provided by fire refugia are critical for supporting conifer forest resiliency under increased fire activity across the western United States. The spatial distribution and persistence of fire refugia over time are uncertain as fire-injured trees continue to die over subsequent years post-fire.Objectives: We examined how post-fire delayed tree mortality affects the spatial distribution and attributes of fire refugia at patch and landscape scales following high-severity wildfires.Methods: To explore changes in fire…
Publication Type: Journal Article
Multi-scale assessment of wildfire use on carbon stocks in the Sierra Nevada, CA
Year: 2025
BackgroundThe active use of wildfire to meet forest management objectives is an important tool to increase the scale of forest restoration in dry, historically frequent-fire forests. While there are many benefits of reintroducing fire to these forests, the impact of wildland fire use policies in frequent-fire forests on aboveground carbon stocks has not yet been studied. In this study, we begin to fill this knowledge gap by assessing how fire frequency and severity affected aboveground carbon dynamics in two basins in the Sierra Nevada with a history of wildfire use over the…
Publication Type: Journal Article
Assessing wildland fire suppression effectiveness with infrared imaging on experimental fires
Year: 2025
Background: Suppression effectiveness is often evaluated by measuring the extent to which it slows fire spread and reduces fireline intensity. Although studies have used infrared (IR) imaging methods to explore suppression effectiveness, most do not measure or assess the influence of water application on energy release.Aims: This preliminary analysis uses IR imagery to quantify the impact of suppression on fire behaviour and the reduction in energy released from a flaming fire.Methods: We conducted a series of small-scale experimental burns…
Publication Type: Journal Article
Fire Intensity and spRead forecAst (FIRA): A Machine Learning Based Fire Spread Prediction Model for Air Quality Forecasting Application
Year: 2025
Fire activities introduce hazardous impacts on the environment and public health by emitting various chemical species into the atmosphere. Most operational air quality forecast (AQF) models estimate smoke emissions based on the latest available satellite fire products, which may not represent real-time fire behaviors without considering fire spread. Hence, a novel machine learning (ML) based fire spread forecast model, the Fire Intensity and spRead forecAst (FIRA), is developed for AQF model applications. FIRA aims to improve the performance of AQF models by providing realistic, dynamic fire…
Publication Type: Journal Article
The western North American forestland carbon sink: will our climate commitments go up in smoke?
Year: 2025
Pathways to achieving net-zero and net-negative greenhouse-gas (GHG) emission targets rely on land-based contributions to carbon (C) sequestration. However, projections of future contributions neglect to consider ecosystems, climate change, legacy impacts of continental-scale fire exclusion, forest accretion and densification, and a century or more of management. These influences predispose western North American forests (wNAFs) to severe drought impacts, large and chronic outbreaks of insect pests, and increasingly large and severe wildfires. To realistically assess contributions of future…
Publication Type: Journal Article
Modeling the probability of bark beetle-caused tree mortality as a function of watershed-scale host species presence and basal area
Year: 2025
In recent decades, bark beetle outbreaks have caused mass tree mortality in western US forests, which has led to altered wildfire characteristics, hydrological processes, and forest carbon dynamics. Understanding spatial variability in forest susceptibility to bark beetle outbreaks in the western US could inform strategic forest management to reduce wildfire risk, manage forest carbon, and plan for altered hydrology. The susceptibility of a forest stand to mortality by bark beetles depends on the availability and characteristics of trees of the host tree species. For multiple bark beetle…
Publication Type: Journal Article
Mapping Delayed Canopy Loss and Durable Fire Refugia for the 2020 Wildfires in Washington State Using Multiple Sensors
Year: 2025
Fire refugia are unburned and low severity patches within wildfires that contribute heterogeneity that is important to retaining biodiversity and regenerating forest following fire. With increasingly intense and frequent wildfires in the Pacific Northwest, fire refugia are important for re-establishing populations sensitive to fire and maintaining resilience to future disturbances. Mapping fire refugia and delayed canopy loss is useful for understanding patterns in their distribution. The increasing abundance of satellite data and advanced analysis platforms offer the potential to map fire…
Publication Type: Journal Article
Governance of Indigenous data in open earth systems science
Year: 2025
In the age of big data and open science, what processes are needed to follow open science protocols while upholding Indigenous Peoples’ rights? The Earth Data Relations Working Group (EDRWG), convened to address this question and envision a research landscape that acknowledges the legacy of extractive practices and embraces new norms across Earth science institutions and open science research. Using the National Ecological Observatory Network (NEON) as an example, the EDRWG recommends actions, applicable across all phases of the data lifecycle, that recognize the sovereign rights of…
Publication Type: Journal Article
Enhancing fire emissions inventories for acute health effects studies: integrating high spatial and temporal resolution data
Year: 2025
Background: Daily fire progression information is crucial for public health studies that examine the relationship between population-level smoke exposures and subsequent health events. Issues with remote sensing used in fire emissions inventories (FEI) lead to the possibility of missed exposures that impact the results of acute health effects studies.Aims: This paper provides a method for improving an FEI dataset with readily available information to create a more robust dataset with daily fire progression.Methods: High temporal and spatial resolution burned area information from two FEI…
Publication Type: Journal Article
Biogeographic patterns of daily wildfire spread and extremes across North America
Year: 2024
Introduction: Climate change is predicted to increase the frequency of extreme single-day fire spread events, with major ecological and social implications. In contrast with well-documented spatio-temporal patterns of wildfire ignitions and perimeters, daily progression remains poorly understood across continental spatial scales, particularly for extreme single-day events (“blow ups”). Here, we characterize daily wildfire spread across North America, including occurrence of extreme single-day events, duration and seasonality of fire and extremes, and ecoregional climatic…
Publication Type: Journal Article
Enhanced future vegetation growth with elevated carbon dioxide concentrations could increase fire activity
Year: 2024
Many regions of the planet have experienced an increase in fire activity in recent decades. Although such increases are consistent with warming and drying under continued climate change, the driving mechanisms remain uncertain. Here, we investigate the effects of increasing atmospheric carbon dioxide concentrations on future fire activity using seven Earth system models. Centered on the time of carbon dioxide doubling, the multi-model mean percent change in fire carbon emissions is 66.4 ± 38.8% (versus 1850 carbon dioxide concentrations, under fixed 1850 land-use conditions). A substantial…
Publication Type: Journal Article
Ladder fuels rather than canopy volumes consistently predict wildfire severity even in extreme topographic-weather conditions
Year: 2024
Drivers of forest wildfire severity include fuels, topography and weather. However, because only fuels can be actively managed, quantifying their effects on severity has become an urgent research priority. Here we employed GEDI spaceborne lidar to consistently assess how pre-fire forest fuel structure affected wildfire severity across 42 California wildfires between 2019–2021. Using a spatial-hierarchical modeling framework, we found a positive concave-down relationship between GEDI-derived fuel structure and wildfire severity, marked by increasing severity with greater fuel loads until a…
Publication Type: Journal Article
Exploring the use of satellite Earth observation active wildland fire hotspot data via open access web platforms
Year: 2024
Globally, managing wildland fire is increasing in complexity. Satellite Earth Observation (EO) data, specifically active fire ‘hotspot’ data, is often used to inform wildland fire management. This study explores hotspot data usage via web traffic data (‘user counts’) for the FIRMS, GWIS and EFFIS web portals between September 2019 and April 2023. Global active fire data use is characterized by multi-month periods of relatively low, stable user counts, interspersed with periodic spikes (4.1x median monthly activity) of activity broadly aligned with the North American / European fire season (…
Publication Type: Journal Article