Skip to main content

Insects and Fire

Displaying 1 - 10 of 54

Budworms, beetles and wildfire: Disturbance interactions influence the likelihood of insect-caused disturbances at a subcontinental scale

Year of Publication
2024
Publication Type

Irruptive forest insects are a leading biotic disturbance across temperate and boreal forests. Outbreaks of forest insects are becoming more frequent and extensive due to anthropogenic drivers (e.g. climate and land-use), perhaps increasing the likelihood that forests will experience multiple insect-caused disturbances.

Exploring How Community Context Informs Variations in Local Perceptions of Forest Disturbance and Land Management in Colorado Over Time

Year of Publication
2024
Publication Type

Placed-based socio-economic and biophysical context has been viewed as an essential driver in shaping perceptions of forest risks and land management. Growing evidence of the importance of diverse community context in forested landscapes sets the stage to further consider how people’s understandings of their local environment influence natural resource management preferences.

Long-term efficacy of fuel reduction and restoration treatments in Northern Rockies dry forests

Year of Publication
2024
Publication Type

Fuel and restoration treatments seeking to mitigate the likelihood of uncharacteristic high-severity wildfires in forests with historically frequent, low-severity fire regimes are increasingly common, but long-term treatment effects on fuels, aboveground carbon, plant community structure, ecosystem resilience, and other ecosystem attributes are understudied.

Tree resistance to drought and bark beetle-associated mortality following thinning and prescribed fire treatments

Year of Publication
2023
Publication Type

Long-term trends show increased tree mortality over the last several decades, coinciding with above-average temperatures, high climatic water deficits, and bark beetle outbreaks. California’s recent unprecedented drought (2012–2016) highlights the need to evaluate whether thinning and prescribed fire can improve individual tree drought resistance and reduce bark beetle-associated mortality.

Fuel Profiles and Biomass Carbon Following Bark Beetle Outbreaks: Insights for Disturbance Interactions from a Historical Silvicultural Experiment

Year of Publication
2023
Publication Type

Anticipating consequences of disturbance interactions on ecosystem structure and function is a critical management priority as disturbance activity increases with warming climate. Across the Northern Hemisphere, extensive tree mortality from recent bark beetle outbreaks raises concerns about potential fire behavior and post-fire forest function.

Future climate risks from stress, insects and fire across US forests

Year of Publication
2022
Publication Type

Forests are currently a substantial carbon sink globally. Many climate change mitigation strategies leverage forest preservation and expansion, but rely on forests storing carbon for decades to centuries. Yet climate-driven disturbances pose critical risks to the long-term stability of forest carbon.

Post-fire Salvage Logging Science Series

Year of Publication
2021
Publication Type

The publications and media in this hot topic address the effects of salvage logging on plants, biodiversity, and cavity-nesting birds. They also cover a range of research that includes, but is not limited to, the ecological impacts of salvage logging; the effects of salvage logging on soil, sediment production, mountain pine beetles, and riparian systems.

Repeated fall prescribed fire in previously thinned Pinus ponderosa increases growth and resistance to other disturbances

Year of Publication
2021
Publication Type

In western North America beginning in the late 19th century, fire suppression and other factors resulted in denseponderosa pine (Pinus ponderosa) forests that are now prone to high severity wildfire, insect attack, and rootdiseases. Thinning and prescribed fire are commonly used to remove small trees, fire-intolerant tree species, andshrubs, and to reduce surface and aerial fuels.