Research Database
Displaying 21 - 40 of 199
Evidence for Wildland Fire Smoke Transport of Microbes From Terrestrial Sources to the Atmosphere and Back
Year: 2024
Smoke from wildland fires contains more diverse, viable microbes than typical ambient air, yet little is known about the sources and sinks of smoke-borne microorganisms. Data from molecular-based surveys suggest that smoke-borne microorganisms originate from material associated with the vegetation and underlying soils that becomes aerosolized during combustion, however, the sources of microbes in smoke have not yet been experimentally assessed. To elucidate this link, we studied high-intensity forest fires in the Fishlake National Forest, Utah, USA and applied source-sink modeling to…
Publication Type: Journal Article
Fuel constraints, not fire weather conditions, limit fire behavior in reburned boreal forests
Year: 2024
Fire frequency in boreal forests has increased via longer burning seasons, drier conditions, and higher temperatures. However, fires have historically self-regulated via fuel limitations, mediating the effects of changes in climate and fire weather. Early post-fire boreal forests (10–15 years postfire) are often dominated by mixed conifer-broadleaf or broadleaf regeneration, considered less flammable due to the higher foliar moisture of broadleaf trees and shrubs compared to their more intact conifer counterparts. However, the strength of self-regulation in the context of changing fire…
Publication Type: Journal Article
Molecular shifts in dissolved organic matter along a burn severity continuum for common land cover types in the Pacific Northwest, USA
Year: 2024
Increasing wildfire severity is of growing concern in the western United States, with consequences for the production, composition, and mobilization of dissolved organic matter (DOM) from terrestrial to aquatic systems. Our current understanding of wildfire impacted DOM (often termed pyrogenic DOM) composition is largely built from temperature-based studies that can be difficult to extrapolate to field conditions, which are often defined by ‘burn severity’, or the post-wildfire impact observed at a site. Thus, burn severity can encapsulate a broader range of fire and environmental conditions…
Publication Type: Journal Article
Strategic fire zones are essential to wildfire risk reduction in the Western United States
Year: 2024
BackgroundOver the last four decades, wildfires in forests of the continental western United States have significantly increased in both size and severity after more than a century of fire suppression and exclusion. Many of these forests historically experienced frequent fire and were fuel limited. To date, fuel reduction treatments have been small and too widely dispersed to have impacted this trend. Currently new land management plans are being developed on most of the 154 National Forests that will guide and support on the ground management practices for the next 15–20 years.…
Publication Type: Journal Article
Untrammeling the wilderness: restoring natural conditions through the return of human-ignited fire
Year: 2024
Historical and contemporary policies and practices, including the suppression of lightning-ignited fires and the removal of intentional fires ignited by Indigenous peoples, have resulted in over a century of fire exclusion across many of the USA’s landscapes. Within many designated wilderness areas, this intentional exclusion of fire has clearly altered ecological processes and thus constitutes a fundamental and ubiquitous act of trammeling. Through a framework that recognizes four orders of trammeling, we demonstrate the substantial, long-term, and negative effects of fire…
Publication Type: Journal Article
Biogeographic patterns of daily wildfire spread and extremes across North America
Year: 2024
Introduction: Climate change is predicted to increase the frequency of extreme single-day fire spread events, with major ecological and social implications. In contrast with well-documented spatio-temporal patterns of wildfire ignitions and perimeters, daily progression remains poorly understood across continental spatial scales, particularly for extreme single-day events (“blow ups”). Here, we characterize daily wildfire spread across North America, including occurrence of extreme single-day events, duration and seasonality of fire and extremes, and ecoregional climatic…
Publication Type: Journal Article
Pathways for sustainable coexistence with wildfires
Year: 2024
Sustainable coexistence with wildfire requires overcoming vicious cycles that trap socio-ecological systems in maladaptive states. A carefully coordinated programme of innovation, education and governance, the ‘wildfire adaptation triad’, is essential for escaping maladaptation across national, community and individual scales.
Publication Type: Journal Article
Garden design can reduce wildfire risk and drive more sustainable co-existence with wildfire
Year: 2024
Destructive wildfire disasters are escalating globally, challenging existing fire management paradigms. The establishment of defensible space around homes in wildland and rural urban interfaces can help to reduce the risk of house loss and provide a safe area for residents and firefighters to defend the property from wildfire. Although defensible space is a well-established concept in fire management, it has received surprisingly limited scientific discussion. Here we reviewed guidelines on the creation of defensible space from Africa, Europe, North America, South America, and Oceania. We…
Publication Type: Journal Article
Branching out: species-specific canopy architecture limits live crown fuel consumption in Intermountain West USA conifers
Year: 2024
Accurate estimates of available live crown fuel loads are critical for understanding potential wildland fire behavior. Existing crown fire behavior models assume that available crown fuels are limited to all tree foliage and half of the fine branches less than 6 mm in diameter (1 h fuel). They also assume that this relationship is independent of the branchwood moisture content. Despite their widespread use, these assumptions have never been tested, and our understanding of the physiochemical properties that govern live crown flammability and consumption remains limited. To test these…
Publication Type: Journal Article
Application of the wildland fire emissions inventory system to estimate fire emissions on forest lands of the United States
Year: 2024
BackgroundForests are significant terrestrial biomes for carbon storage, and annual carbon accumulation of forest biomass contributes offsets affecting net greenhouse gases in the atmosphere. The immediate loss of stored carbon through fire on forest lands reduces the annual offsets provided by forests. As such, the United States reporting includes annual estimates of direct fire emissions in conjunction with the overall forest stock and change estimates as a part of national greenhouse gas inventories within the United Nations Framework Convention on Climate Change. Forest fire emissions…
Publication Type: Journal Article
Forest structural complexity and ignition pattern influence simulated prescribed fire effects
Year: 2024
Forest structural characteristics, the burning environment, and the choice of ignition pattern each influence prescribed fire behaviors and resulting fire effects; however, few studies examine the influences and interactions of these factors. Understanding how interactions among these drivers can influence prescribed fire behavior and effects is crucial for executing prescribed fires that can safely and effectively meet management objectives. To analyze the interactions between the fuels complex and ignition patterns, we used FIRETEC, a three-dimensional computational fluid dynamics fire…
Publication Type: Journal Article
Wildfire Smoke Exposure and Incident Dementia
Year: 2024
Importance: Long-term exposure to total fine particulate matter (PM2.5) is a recognized dementia risk factor, but less is known about wildfire-generated PM2.5, an increasingly common PM2.5 source. Objective: To assess the association between long-term wildfire and nonwildfire PM2.5 exposure and risk of incident dementia. Design, Setting, and Participants: This open cohort study was conducted using January 2008 to December 2019 electronic health record (EHR) data among members of Kaiser Permanente Southern California (KPSC), which serves…
Publication Type: Journal Article
Mapping the distance between fire hazard and disaster for communities in Canadian forests.
Year: 2024
Communities interspersed throughout the Canadian wildland are threatened by fires that have become bigger and more frequent in some parts of the country in recent decades. Identifying the fireshed (source area) and pathways from which wildland fire may ignite and spread from the landscape to a community is crucial for risk-reduction strategy and planning. We used outputs from a fire simulation model, including fire polygons and rate of spread, to map firesheds, fire pathways and corridors and spread distances for 1980 communities in the forested areas of Canada. We found fireshed sizes are…
Publication Type: Journal Article
A fire-use decision model to improve the United States’ wildfire management and support climate change adaptation
Year: 2024
The US faces multiple challenges in facilitating the safe, effective, and proactive use of fire as a landscape management tool. This intentional fire use exposes deeply ingrained communication challenges and distinct but overlapping strategies of prescribed fire, cultural burning, and managed wildfire. We argue for a new conceptual model that is organized around ecological conditions, capacity to act, and motivation to use fire and can integrate and expand intentional fire use as a tool. This result emerges from more considered collaboration and communication of values and needs to address…
Publication Type: Journal Article
Generating fuel consumption maps on prescribed fire experiments from airborne laser scanning
Year: 2024
Background. Characterisation of fuel consumption provides critical insights into fire behaviour, effects, and emissions. Stand-replacing prescribed fire experiments in central Utah offered an opportunity to generate consumption estimates in coordination with other research efforts. Aims. We sought to generate fuel consumption maps using pre- and post-fire airborne laser scanning (ALS) and ground measurements and to test the spatial transferability of the ALSderived fuel models. Methods. Using random forest (RF), we empirically modelled fuel load and estimated consumption from pre-…
Publication Type: Journal Article
The fastest-growing and most destructive fires in the US (2001 to 2020)
Year: 2024
The most destructive and deadly wildfires in US history were also fast. Using satellite data, we analyzed the daily growth rates of more than 60,000 fires from 2001 to 2020 across the contiguous US. Nearly half of the ecoregions experienced destructive fast fires that grew more than 1620 hectares in 1 day. These fires accounted for 78% of structures destroyed and 61% of suppression costs ($18.9 billion). From 2001 to 2020, the average peak daily growth rate for these fires more than doubled (+249% relative to 2001) in the Western US. Nearly 3 million structures were within 4 kilometers of a…
Publication Type: Journal Article
Pixels to pyrometrics: UAS-derived infrared imagery to evaluate and monitor prescribed fire behaviour and effects
Year: 2024
Background: Prescribed fire is vital for fuel reduction and ecological restoration, but the effectiveness and fine-scale interactions are poorly understood. Aims: We developed methods for processing uncrewed aircraft systems (UAS) imagery into spatially explicit pyrometrics, including measurements of fuel consumption, rate of spread, and residence time to quantitatively measure three prescribed fires. Methods: We collected infrared (IR) imagery continuously (0.2 Hz) over prescribed burns and one experimental calibration burn, capturing…
Publication Type: Journal Article
Comparing ground-based lightning detection networks near wildfire points-of-origin
Year: 2024
Lightning detection and attribution to wildfire ignitions is a critical component of fire management worldwide to both reduce hazards of wildfire to values-at-risk and to enhance the potential for wildland fire to provide resource benefits in fire-adapted ecosystems. We compared two operational ground-based lightning detection networks used by fire managers to identify cloud-to-ground strokes within operationally-relevant distances (1.6 km) of the origins of 4408 western United States lightning-ignited wildfires spanning May–September 2020. Applying two sets of constraints–varying…
Publication Type: Journal Article
Variability in weather and site properties affect fuel and fire behavior following fuel treatments in semiarid sagebrush-steppe
Year: 2024
Fuel-treatments targeting shrubs and fire-prone exotic annual grasses (EAGs) are increasingly used to mitigate increased wildfire risks in arid and semiarid environments, and understanding their response to natural factors is needed for effective landscape management. Using field-data collected over four years from fuel-break treatments in semiarid sagebrush-steppe, we asked 1) how the outcomes of EAG and sagebrush fuel treatments varied with site biophysical properties, climate, and weather, and 2) how predictions of fire behavior using the Fuel Characteristic Classification System fire…
Publication Type: Journal Article
A Wildfire Progression Simulation and Risk-Rating Methodology for Power Grid Infrastructure
Year: 2024
As the frequency and intensity of power line-induced wildfires increase due to climate-, human- , and infrastructure-related risk drivers, maintaining power system resilience and reducing environmental impacts become increasingly crucial. This paper presents a comprehensive methodology to assess the susceptibility, vulnerability, and risk of power line-induced wildfires for lines and nodes in an electric grid. The methodology integrates a well-established wildfire spread simulator into power flow analysis through a set of analytical steps. The proposed approach is applied to a case study…
Publication Type: Journal Article