Research Database
Displaying 161 - 180 of 200
Climate stress increases forest fire severity across the western United States
Year: 2013
Pervasive warming can lead to chronic stress on forest trees, which may contribute to mortality resulting from fire-caused injuries. Longitudinal analyses of forest plots from across the western US show that high pre-fire climatic water deficit was related to increased post-fire tree mortality probabilities. This relationship between climate and fire was present after accounting for fire defences and injuries, and appeared to influence the effects of crown and stem injuries. Climate and fire interactions did not vary substantially across geographical regions, major genera and tree sizes. Our…
Publication Type: Journal Article
Fire regimes of quaking aspen in the Mountain West
Year: 2013
Quaking aspen, the most widespread tree species in North America, reproduces primarily by resprouting from roots. In some stands, mortality from fire encourages sprouting and prevents conifers from eventually replacing aspen. In other areas, aspen can form stable communities that do not require fire to regenerate or persist. USGS fire ecologist Doug Shinneman and colleagues reviewed literature about aspen populations and fire, summarized research findings, and suggested a classification system for aspen across the western mountainous United States. The scientists proposed five aspen “fire…
Publication Type: Journal Article
Fire-mediated pathways of stand development in Douglas-fir/ western hemlock forests of the Pacific Northwest, USA
Year: 2013
Forests dominated by Douglas-fir and western hemlock in the Pacific Northwest of the United States have strongly influenced concepts and policy concerning old-growth forest conservation. Despite the attention to their old-growth characteristics, a tendency remains to view their disturbance ecology in relatively simple terms, emphasizing infrequent, stand-replacing (SR) fire and an associated linear pathway toward development of those old-growth characteristics. This study uses forest stand- and age-structure data from 124 stands in the central western Cascades of Oregon to construct a…
Publication Type: Journal Article
Relationships between climate and macroscale area burned in the western United States
Year: 2013
Increased wildfire activity (e.g. number of starts, area burned, fire behaviour) across the western United States in recent decades has heightened interest in resolving climate–fire relationships. Macroscale climate–fire relationships were examined in forested and non-forested lands for eight Geographic Area Coordination Centers in the western United States, using area burned derived from the Monitoring Trends in Burn Severity dataset (1984–2010). Fire-specific biophysical variables including fire danger and water balance metrics were considered in addition to standard climate variables of…
Publication Type: Journal Article
Fuel Treatments and Fire Severity: A Meta-Analysis
Year: 2013
We employed meta-analysis and information theory to synthesize findings reported in the literature on the effects of fuel treatments on subsequent fire intensity and severity. Data were compiled from 19 publications that reported observed fire responses from 62 treated versus untreated contrasts. Effect sizes varied widely and the most informative grouping of studies distinguished three vegetation types and three types of fuel treatment. The resultant meta-analytic model is highly significant (p<0.001) and explains 78% of the variability in reported observations of fuel treatment…
Publication Type: Report
Pre-wildfire fuel reduction treatments result in more resilient forest structure a decade after wildfire
Year: 2013
Increasing size and severity of wildfires have led to an interest in the effectiveness of forest fuels treatments on reducing fire severity and post-wildfire fuels. Our objective was to contrast stand structure and surface fuel loadings on treated and untreated sites within the 2002 Rodeo–Chediski Fire area. Data from 140 plots on seven paired treated–untreated sites indicated that pre-wildfire treatments reduced fire severity compared with untreated sites. In 2011, coarse woody debris loading (woody material >7.62 cm in diameter) was 257% higher and fine woody debris (woody material <7…
Publication Type: Journal Article
Managing Forests and Fire in Changing Climates
Year: 2013
With projected climate change, we expect to face much more forest fi re in the coming decades. Policymakers are challenged not to categorize all fires as destructive to ecosystems simply because they have long flame lengths and kill most of the trees within the fire boundary. Ecological context matters: In some ecosystems, high-severity regimes are appropriate, but climate change may modify these fire regimes and ecosystems as well. Some undesirable impacts may be avoided or reduced through global strategies, as well as distinct strategies based on a forest’s historical fire regime.
Publication Type: Report
Soil heating during burning of forest slash piles and wood piles
Year: 2013
Pile burning of conifer slash is a common fuel reduction practice in forests of the western United States that has a direct, yet poorly quantified effect on soil heating. To address this knowledge gap, we measured the heat pulse beneath hand-built piles ranging widely in fuel composition and pile size in sandy-textured soils of the Lake Tahoe Basin. The soil heat pulse depended primarily on fuel composition, not on pile size. Burn piles dominated by large wood produced extreme temperatures in soil profile, with lethal heating lasting up to 3 days. In contrast, the heat pulse was moderate…
Publication Type: Journal Article
Restoration of dry forests in eastern Oregon: A field guide
Year: 2013
Dry Forest landscapes dominated by pine and mixed-conifer forests composed of ponderosa pine and associated coniferous species, such as Douglas-fir and white or grand fir, are extensive in western North America, including the Pacific Northwest (Franklin and Dyrness, 1988). These forests typically occupy landscapes that are moisture limited and historically experienced disturbance regimes that included frequent wildfire. On many sites fires were predominantly low severity but mixed-severity and, occasionally, even high-severity wildfire occurred, the latter primarily in areas at higher…
Publication Type: Report
Harmful filamentous cyanobacteria favoured by reduced water turnover with lake warming
Year: 2012
Anthropogenic-induced changes in nutrient ratios have increased the susceptibility of large temperate lakes to several effects of rising air temperatures and the resulting heating of water bodies. First, warming leads to stronger thermal stratification, thus impeding natural complete water turnover (holomixis), which compensates for oxygen deficits in the deep zones. Second, increased water temperatures and nutrient concentrations can directly favour the growth of harmful algae. Thus, lake-restoration programmes have focused on reducing nutrients to limit toxic algal blooms. Here we present…
Publication Type: Journal Article
Estimation of Wildfire Size and Risk Changes Due to Fuels Treatments
Year: 2012
Human land use practices, altered climates, and shifting forest and fire management policies have increased the frequency of large wildfires several-fold. Mitigation of potential fire behaviour and fire severity have increasingly been attempted through pre-fire alteration of wildland fuels using mechanical treatments and prescribed fires. Despite annual treatment of more than a million hectares of land, quantitative assessments of the effectiveness of existing fuel at reducing the size of actual wildfires or how they might alter the risk of burning across landscapes are currently lacking.…
Publication Type: Journal Article
Temporal dynamics and decay of coarse wood in early seral habitats of dry-mixed conifer forests in Oregon’s Eastern Cascades
Year: 2012
Early seral forest habitats are increasingly valued for the unique structural resources they provide in many western US forests. Coarse woody detritus (CWD) are a significant feature of this developmental stage and are highly dynamic, suggesting these environments exhibit temporally diverse structural conditions prior to forest canopy closure. In dry-mixed conifer forests, snags are hypothesized to decay slower than logs making long-term dynamics in these forests dependent on snag fall, breakage and the decay rates of both standing and surface CWD. We estimated snag fall and breakage rates…
Publication Type: Journal Article
USGS Fire Science - Fire danger monitoring and forecasting
Year: 2012
The United States Geological Survey (USGS) uses moderate resolution satellite data to assess live fuel condition for estimating fire danger. Using 23 years of vegetation condition measurements, we are able to determine the relative greenness of current live fuels. High relative greenness values indicate the vegetation is healthy and vigorous; low greenness values indicate the vegetation is under stress, dry (possibly from drought), behind in annual development, or dead. Forest, shrub, and grassland vegetation with low relative greenness are susceptible to fire ignition during the fire season…
Publication Type: Report
The Effects of Forest Fuel-Reduction Treatments in the United States
Year: 2012
The current conditions of many seasonally dry forests in the western and southern United States, especially those that once experienced low- to moderate-intensity fire regimes, leave them uncharacteristically susceptible to high-severity wildfire. Both prescribed fire and its mechanical surrogates are generally successful in meeting short-term fuel-reduction objectives such that treated stands are more resilient to high-intensity wildfire. Most available evidence suggests that these objectives are typically accomplished with few unintended consequences, since most ecosystem components (…
Publication Type: Journal Article
Moisture desorption in mechanically masticated fuels: effects of particle fracturing and fuelbed compaction
Year: 2012
Mechanical mastication is increasingly used as a wildland fuel treatment, reducing standing trees and shrubs to compacted fuelbeds of fractured woody fuels. One major shortcoming in our understanding of these fuelbeds is how particle fracturing influences moisture gain or loss, a primary determinant of fire behaviour. To better understand fuel moisture dynamics, we measured particle and fuelbed drying rates of masticated Arctostaphylos manzanita and Ceanothus velutinus shrubs, common targets of mastication in fire-prone western USA ecosystems. Drying rates of intact and fractured particles…
Publication Type: Journal Article
Fuel Treatment Effectiveness in California Yellow Pine and Mixed Conifer Forests
Year: 2012
We assessed the effectiveness of forest fuel thinning projects that explicitly removed surface and ladder fuels (all but one were combined mechanical and prescribed fire/pile burn prescriptions) in reducing fire severity and tree mortality in 12 forest fires that burned in eastern and southern California between 2005 and 2011. All treatments and fires occurred in yellow pine or mixed conifer forests, in a variety of landscape conditions. Most fires burned under warm, dry conditions, with moderate to high winds. With few exceptions, fire severity measures (bole char height, scorch and torch…
Publication Type: Journal Article
Wildfire severity mediates fluxes of plant material and terrestrial invertebrates to mountain streams
Year: 2012
Wildfire effects upon riparian plant community structure, composition, and distribution may strongly influence the dynamic relationships between riparian vegetation and stream ecosystems. However, few studies have examined the influence of fire on these processes. To that end, we compared the quantity and composition of allochthonous inputs of plant material and terrestrial invertebrates among stream tributaries characterized by various degrees of burn severity 5 years post-fire in the Frank Church Wilderness of central Idaho, USA. The magnitude of inputs of coniferous leaf litter to unburned…
Publication Type: Journal Article
Predicting Dry Lightning Risk Nationwide
Year: 2012
Meteorologists developed two formulas to predict the probability of dry lightning throughout the continental United States and Alaska and parts of Canada. Predictions are made daily and are accessible through the web at http://www.airfire.org/tools/daily-fi re-weather/dry-lightning-probability. The emphasis is on the western United States, where dry lightning is a more common occurrence. Predictions are based on identifying days on which lightning is expected and separately determining whether there is likely to be at least 1/10th inch of accompanying rain. The formulas are run with the…
Publication Type: Report
Seasonal variation in surface fuel moisture between unthinned and thinned mixed conifer forest, northern California, USA
Year: 2012
Reducing stand density is often used as a tool for mitigating the risk of high-intensity crown fires. However, concern has been expressed that opening stands might lead to greater drying of surface fuels, contributing to increased fire risk. The objective of this study was to determine whether woody fuel moisture differed between unthinned and thinned mixed-conifer stands. Sections of logs representing the 1000- and 10 000-h fuel sizes were placed at 72 stations within treatment units in the fall (autumn) of 2007. Following snow-melt in 2008, 10-h fuel sticks were added and all fuels were…
Publication Type: Journal Article
Surface fuel treatments in young, regenerating stands affect wildfire severity in a mixed conifer forest, eastside Cascade Range, Washington, USA
Year: 2012
Previous studies have debated the flammability of young regenerating stands, especially those in a matrix of mature forest, and no consensus has emerged as to whether young stands are inherently prone to high severity wildfire. This topic has recently been addressed using spatial imagery, and weak inferences were made given the scale mismatch between the coarse resolution of spatial imagery and the fine resolution of mechanisms driving fire severity. We collected empirical stand and fire-severity data from 44 regenerating stands that are interspersed in mature, mid-elevation forests in the…
Publication Type: Journal Article