Research Database
Displaying 321 - 340 of 349
The Effects of Forest Fuel-Reduction Treatments in the United States
Year: 2012
The current conditions of many seasonally dry forests in the western and southern United States, especially those that once experienced low- to moderate-intensity fire regimes, leave them uncharacteristically susceptible to high-severity wildfire. Both prescribed fire and its mechanical surrogates are generally successful in meeting short-term fuel-reduction objectives such that treated stands are more resilient to high-intensity wildfire. Most available evidence suggests that these objectives are typically accomplished with few unintended consequences, since most ecosystem components (…
Publication Type: Journal Article
Fuel Variability Following Wildfire in Forests with Mixed Severity Fire Regimes, Cascade Range, USA
Year: 2012
Publication Type: Journal Article
Using niche models with climate projections to inform conservation management decisions
Year: 2012
Conservation science strives to inform management decisions. Applying niche models in concert with future climate projections to project species vulnerability to extinction, range size loss, or distribution shifts has emerged as a potentially useful tool for informing resource management decisions. Making climate change niche modeling useful to conservation decisions requires centering studies on the types of decisions that are made regarding the focal taxa of a niche model study. Recent recommendations for climate adaptation strategies suggest four types of decision makers: policy, habitat…
Publication Type: Journal Article
Surface fuel treatments in young, regenerating stands affect wildfire severity in a mixed conifer forest, eastside Cascade Range, Washington, USA
Year: 2012
Previous studies have debated the flammability of young regenerating stands, especially those in a matrix of mature forest, and no consensus has emerged as to whether young stands are inherently prone to high severity wildfire. This topic has recently been addressed using spatial imagery, and weak inferences were made given the scale mismatch between the coarse resolution of spatial imagery and the fine resolution of mechanisms driving fire severity. We collected empirical stand and fire-severity data from 44 regenerating stands that are interspersed in mature, mid-elevation forests in the…
Publication Type: Journal Article
Ecological effects of alternative fuel-reduction treatments: highlights of the National Fire and Fire Surrogate study (FSS)
Year: 2012
The 12-site National Fire and Fire Surrogate study (FFS) was a multivariate experiment that evaluated ecological consequences of alternative fuel-reduction treatments in seasonally dry forests of the US. Each site was a replicated experiment with a common design that compared an un-manipulated control, prescribed fire, mechanical and mechanical + fire treatments. Variables within the vegetation, fuelbed, forest floor and soil, bark beetles, tree diseases and wildlife were measured in 10-ha stands, and ecological response was compared among treatments at the site level, and across sites, to…
Publication Type: Journal Article
Fuels and Fire Behavior Dynamics in Bark Beetle-Attacked Forests in Western North America and Implications for Fire Management
Year: 2012
Declining forest health attributed to associations between extensive bark beetle-caused tree mortality, accumulations of hazardous fuels, wildfire, and climate change have catalyzed changes in forest health and wildfire protection policies of land management agencies. These changes subsequently prompted research to investigate the extent to which bark beetle-altered fuel complexes affect fire behavior. Although not yet rigorously quantified, the results of the investigations, in addition to a growing body of operational experience and research, indicates that predictable changes in surface,…
Publication Type: Journal Article
A Review of Recent Advances in Risk Analysis for Wildfire Management
Year: 2012
Risk analysis evolved out of the need to make decisions concerning highly stochastic events, and is well suited to analyse the timing, location and potential effects of wildfires. Over the past 10 years, the application of risk analysis to wildland fire management has seen steady growth with new risk-based analytical tools that support a wide range of fire and fuels management planning scales from individual incidents to national, strategic interagency programs. After a brief review of the three components of fire risk – likelihood, intensity and effects – this paper reviews recent advances…
Publication Type: Journal Article
Short- and Long-term Effects of Fire on Carbon in US Dry Temperate Forest Systems
Year: 2011
Forests sequester carbon from the atmosphere, and in so doing can mitigate the effects of climate change. Fire is a natural disturbance process in many forest systems that releases carbon back to the atmosphere. In dry temperate forests, fires historically burned with greater frequency and lower severity than they do today. Frequent fires consumed fuels on the forest floor and maintained open stand structures. Fire suppression has resulted in increased understory fuel loads and tree density; a change in structure that has caused a shift from low- to high-severity fires. More severe fires,…
Publication Type: Journal Article
Assessing Fuel Treatment Effectiveness After the Tripod Complex Fires
Year: 2011
Over the past 50 years, wildfire frequency and area burned have increased in the dry forests of western North America. To help reduce high surface fuel loads and potential wildfire severity, a variety of fuel treatments are applied. In spite of the common use of these management practices, there have been relatively few opportunities to quantitatively measure their efficacy in wildfires. That changed with the 2006 Tripod Complex fires in the Okanogan-Wenatchee National Forest in Washington—one of the largest fire events in Washington state over the past five decades. A serendipitous…
Publication Type: Report
Both topography and climate affected forest and woodland burn severity in two regions of the western US, 1984 to 2006
Year: 2011
Fire is a keystone process in many ecosystems of western North America. Severe fires kill and consume large amounts of above- and belowground biomass and affect soils, resulting in long-lasting consequences for vegetation, aquatic ecosystem productivity and diversity, and other ecosystem properties. We analyzed the occurrence of, and trends in, satellite-derived burn severity across six ecoregions in the Southwest and Northwest regions of the United States from 1984 to 2006 using data from the Monitoring Trends in Burn Severity project. Using 1,024 fires from the Northwest (4,311,871 ha) and…
Publication Type: Journal Article
Evaluating Soil Risks Associated With Severe Wildfire and Ground-Based Logging
Year: 2011
Rehabilitation and timber-salvage activities after wildfire require rapid planning and rational decisions. Identifying areas with high risk for erosion and soil productivity losses is important. Moreover, allocation of corrective and mitigative efforts must be rational and prioritized. Our logic-based analysis of forested soil polygons on the Okanogan-Wenatchee National Forest was designed and implemented with the Ecosystem Management Decision Support (EMDS) system to evaluate risks to soil properties and productivity associated with moderate to severe wildfire and unmitigated use of ground-…
Publication Type: Report
The fire pulse: wildfire stimulates flux of aquatic prey to terrestrial habitats driving increase in riparian consumers
Year: 2010
We investigated the midterm effects of wildfire (in this case, five years after the fire) of varying severity on periphyton, benthic invertebrates, emerging adult aquatic insects, spiders, and bats by comparing unburned sites with those exposed to low severity (riparian vegetation burned but canopy intact) and high severity (canopy completely removed) wildfire. We observed no difference in periphyton chlorophyll a or ash-free dry mass among different burn categories but did observe significantly greater biomass of benthic invertebrates in both high severity burned and unburned reaches versus…
Publication Type: Journal Article
Assessing fuel treatment effectiveness using satellite imagery and spatial statistics
Year: 2009
Understanding the influences of forest management practices on wildfire severity is critical in fire-prone ecosystems of the western United States. Newly available geospatial data sets characterizing vegetation, fuels, topography, and burn severity offer new opportunities for studying fuel treatment effectiveness at regional to national scales. In this study, we used ordinary least-squares (OLS) regression and sequential autoregression (SAR) to analyze fuel treatment effects on burn severity for three recent wildfires: the Camp 32 fire in western Montana, the School fire in southeastern…
Publication Type: Journal Article
Masticating Fuels: Effects on Prescribed Fire Behavior and Subsequent Vegetation Effects
Year: 2009
In fire management, there is an ongoing quest to find cost-effective, ecologically sound, and risk-reducing approaches to restoring dry conifer forests. So far little is known about the effectiveness of using mastication equipment in conjunction with prescribed burning to help meet management and restoration goals. Richy Harrod is the Deputy Fire Management Officer at the Okanogan-Wenatchee National Forest in Wenatchee, Washington. He and his colleagues began to address this knowledge gap and found that mastication may be a cost-effective and important tool for managers looking for additional…
Publication Type: Report
Synthesis of Knowledge on the Effects of Fire and Fire Surrogates on Wildlife in U.S. Dry Forests
Year: 2009
Dry forests throughout the United States are fire-dependent ecosystems, and much attention has been given to restoring their ecological function. As such, land managers often are tasked with reintroducing fire via prescribed fire, wildland fire use, and fire-surrogate treatments such as thinning and mastication. During planning, managers frequently are expected to anticipate effects of management actions on wildlife species. This document represents a synthesis of existing knowledge on wildlife responses to fire and fire-surrogate treatments, presented in a useful, management-relevant format…
Publication Type: Report
ArcFuels: Integrating Wildfire Models and Risk Analysis into Landscape Fuels Management
Year: 2009
That risk from wildfire continues to grow across the United States is not a new problem. Managing forest fuels in the real world—such as thinning and burning prescriptively—to reduce fuel loads have been used effectively to reduce the risk of severe wildfire. These actions have been helped by a variety of software tools that assist managers in planning and evaluating fuel treatments to ensure they are cost effective in terms of impeding the growth of future large, severe wildfires. While many landscape planning tools do a fine job within the scope of their capabilities, the process of fine…
Publication Type: Report
Response of antelope bitterbrush to repeated prescribed burning in Central Oregon ponderosa pine forests
Year: 2009
Antelope bitterbrush is a dominant shrub in many interior ponderosa pine forests in the western United States. How it responds to prescribed fire is not well understood, yet is of considerable concern to wildlife and fire managers alike given its importance as a browse species and as a ladder fuel in these fire-prone forests. We quantified bitterbrush cover, density, and biomass in response to repeated burning in thinned ponderosa pine forests. Low- to moderate-intensity spring burning killed the majority of bitterbrush plants on replicate plots. Moderately rapid recovery of bitterbrush…
Publication Type: Journal Article
Estimating volume, biomass, and potential emissions of hand-piled fuels
Year: 2009
Dimensions, volume, and biomass were measured for 121 hand-constructed piles composed primarily of coniferous (n = 63) and shrub/hardwood (n = 58) material at sites in Washington and California. Equations using pile dimensions, shape, and type allow users to accurately estimate the biomass of hand piles. Equations for estimating true pile volume from simple geometric shapes and measurements of pile dimensions were also developed for users who require estimates of pile volume for regulatory reporting. Biomass and volume estimation equations were developed to allow users to estimate either…
Publication Type: Report
Postfire woodpecker foraging in salvage-logged and unlogged forests of the Sierra Nevada
Year: 2008
In forests, high-severity burn patches — wherein most or all of the trees are killed by fire — often occur within a mosaic of low- and moderate-severity effects. Although there have been several studies of postfire salvage-logging effects on bird species, there have been few studies of effects on bird species associated with high-severity patches in forests that have otherwise burned at lower severities. From 2004 to 2006, we investigated the foraging presence or absence of three woodpecker species, the Black-backed (Picoides arcticus), Hairy (P. villosus), and White-headed (P. albolarvatus)…
Publication Type: Journal Article
The Ecological Importance of Severe Wildfires: Some Like it Hot
Year: 2008
Many scientists and forest land managers concur that past fire suppression, grazing, and timber harvesting practices have created unnatural and unhealthy conditions in the dry, ponderosa pine forests of the western United States. Specifically, such forests are said to carry higher fuel loads and experience fires that are more severe than those that occurred historically. It remains unclear, however, how far these generalizations can be extrapolated in time and space, and how well they apply to the more mesic ponderosa pine systems and to other forest systems within the western United States.…
Publication Type: Journal Article