Research Database
Displaying 1 - 20 of 149
Prescribed fire, managed burning, and previous wildfires reduce the severity of a southwestern US gigafire
Year: 2025
In many parts of the western United States, wildfires are becoming larger and more severe, threatening the persistence of forest ecosystems. Understanding the ways in which management activities such as prescribed fire and managed wildfire can mitigate fire severity is essential for developing effective forest conservation strategies. We evaluated the effects of previous fuels reduction treatments, including prescribed fire and wildfire managed for resource benefit, and other wildfires on the burn severity of the 2022 Black Fire in southwestern New Mexico, USA. The Black Fire burned over 131,…
Publication Type: Journal Article
Evaluating a simulation-based wildfire burn probability map for the conterminous US
Year: 2025
Background: Wildfire simulation models are used to derive maps of burn probability (BP) based on fuels, weather, topography and ignition locations, and BP maps are key components of wildfire risk assessments.Aims: Few studies have compared BP maps with real-world fires to evaluate their suitability for near-future risk assessment. Here, we evaluated a BP map for the conterminous US based on the large fire simulation model FSim.Methods: We compared BP with observed wildfires from 2016 to 2022 across 128 regions representing similar fire regimes (‘pyromes’). We…
Publication Type: Journal Article
A fire deficit persists across diverse North American forests despite recent increases in area burned
Year: 2025
Rapid increases in wildfire area burned across North American forests pose novel challenges for managers and society. Increasing area burned raises questions about whether, and to what degree, contemporary fire regimes (1984–2022) are still departed from historical fire regimes (pre-1880). We use the North American tree-ring fire-scar network (NAFSN), a multi-century record comprising >1800 fire-scar sites spanning diverse forest types, and contemporary fire perimeters to ask whether there is a contemporary fire surplus or fire deficit, and whether recent fire years are unprecedented…
Publication Type: Journal Article
Fine Particulate Matter From 2020 California Wildfires and Mental Health–Related Emergency Department Visits
Year: 2025
Importance: A growing body of research suggests that exposure to fine particulate matter (PM2.5; particle size 2.5 microns or smaller) may be associated with mental health outcomes. However, the potential impact of wildfire-specific PM2.5 exposure on mental health remains underexplored.Objective: To investigate whether wildfire-specific PM2.5 exposure may be associated with emergency department (ED) visits for mental health conditions, including all-cause and for psychoactive substance use, nonmood psychotic disorders, anxiety, depression, and other mood-affective disorders during the…
Publication Type: Journal Article
Can ‘‘Fire Safe’’ Cigarettes (FSCs) Start Wildfires?
Year: 2025
Over the last 20 years, all states within the US have required all cigarettes sold to be ‘‘fire safe’’ or ‘‘fire standards compliant’’ meaning that they must pass ASTM standard E2187. Though these cigarettes are designed to self-extinguish, there have been recent studies suggesting that these ‘‘fire safe’’ cigarettes (FSCs) can still ignite mattresses and other furnishings, but there has been no guidance for fire investigators whether FSCs can ignite natural fuels, such as duff and needles, that can be the source of a wildland fire. This work sets out to investigate whether FSCs can indeed be…
Publication Type: Journal Article
Future enhanced threshold effects of wildfire drivers could increase burned areas in northern mid- and high latitudes
Year: 2025
Wildfires exhibit extensive nonlinear characteristics and threshold effects in response to environmental changes. However, how threshold effects affect wildfire responses and their future changes remains unclear. Here we identified thresholds where wildfire-driver relationships shift and estimated the impact of threshold effects on wildfire dynamics in the 21st century in northern mid- and high latitudes (>30°N). Wildfire-driver thresholds, coregulated by gradient differences in heat and moisture conditions, vegetation productivity, and human activities, effectively explain the spatial…
Publication Type: Journal Article
Global Synthesis of Quantification of Fire Behaviour Characteristics in Forests and Shrublands: Recent Progress
Year: 2025
Purpose of ReviewThe behaviour of wildland fires, namely their free spreading nature, destructive energy fluxes and hazardous environment, make it a phenomenon difficult to study. Field experimental studies and occasional wildfire observations underpin our understanding of fire behaviour. We aim to present a global synthesis of field-based studies in forest and shrublands fuel types published since 2003 with a focus on the most commonly measured fire behaviour attributes, namely rate of fire spread, ignition and spread sustainability, flame characteristics, fuel consumption…
Publication Type: Journal Article
Wildland Firefighters Suffer Increasing Risk of Job-Related Death
Year: 2025
Wildland firefighting is a niche specialization in the fire service - inherently dangerous with unique risks. Over the past decade, fatalities amongst all firefighters have decreased; however, wildland firefighter fatalities have increased. This subject has only been described in the grey literature, and a paucity of medical literature exists. The United States Fire Administration's online fatality database was queried for on duty mortality between 1990 and 2022. The year 2001 was excluded due to the 340 deaths that occurred on September 11th. Data collected included demographics, incident…
Publication Type: Journal Article
Compounding effects of climate change and WUI expansion quadruple the likelihood of extreme-impact wildfires in California
Year: 2025
Previous research has examined individual factors contributing to wildfire risk, but the compounding effects of these factors remain underexplored. Here, we introduce the “Integrated Human-centric Wildfire Risk Index (IHWRI)” to quantify the compounding effects of fire-weather intensification and anthropogenic factors—including ignitions and human settlement into wildland—on wildfire risk. While climatic trends increased the frequency of high-risk fire-weather by 2.5-fold, the combination of this trend with wildland-urban interface expansion led to a 4.1-fold increase in the frequency of…
Publication Type: Journal Article
Canadian forests are more conducive to high-severity fires in recent decades
Year: 2025
Canada has experienced more-intense and longer fire seasons with more-frequent uncontrollable wildfires over the past decades. However, the effect of these changes remains unknown. This study identifies driving forces of burn severity and estimates its spatiotemporal variations in Canadian forests. Our results show that fuel aridity was the most influential driver of burn severity, summer months were more prone to severe burning, and the northern areas were most influenced by the changing climate. About 6% (0.54 to 14.64%) of the modeled areas show significant increases in the number of days…
Publication Type: Journal Article
Wildland fire entrainment: The missing link between wildland fire and its environment
Year: 2025
Wildfires are growing in destructive power, and accurately predicting the spread and intensity of wildland fire is essential for managing ecological and societal impacts. No current operational models used for fire behavior prediction resolve critical fire-atmospheric coupling or nonlocal influences of the fire environment, rendering them inadequate in accounting for the range of wildland fire behavior scenarios under increasingly novel fuel and climate conditions. Here, we present a new perspective on a dominant fire-atmospheric feedback mechanism, which we term wildland fire entrainment (…
Publication Type: Journal Article
Compounding effects of climate change and WUI expansion quadruple the likelihood of extreme-impact wildfires in California
Year: 2025
Previous research has examined individual factors contributing to wildfire risk, but the compounding effects of these factors remain underexplored. Here, we introduce the “Integrated Human-centric Wildfire Risk Index (IHWRI)” to quantify the compounding effects of fire-weather intensification and anthropogenic factors—including ignitions and human settlement into wildland—on wildfire risk. While climatic trends increased the frequency of high-risk fire-weather by 2.5-fold, the combination of this trend with wildland-urban interface expansion led to a 4.1-fold increase in the frequency of…
Publication Type: Journal Article
Changing fire regimes in the Great Basin USA
Year: 2025
Wildfire is a natural disturbance in landscapes of the Western United States, but the effects and extents of fire are changing. Differences between historical and contemporary fire regimes can help identify reasons for observed changes in landscape composition. People living and working in the Great Basin, USA, are observing altered fire conditions, but spatial information about the degree and direction of change and departure from historical fire regimes is lacking. This study estimates how fire regimes have changed in the major Great Basin vegetation types over the past 60 years with…
Publication Type: Journal Article
Human driven climate change increased the likelihood of the 2023 record area burned in Canada
Year: 2024
In 2023, wildfires burned 15 million hectares in Canada, more than doubling the previous record. These wildfires caused a record number of evacuations, unprecedented air quality impacts across Canada and the northeastern United States, and substantial strain on fire management resources. Using climate models, we show that human-induced climate change significantly increased the likelihood of area burned at least as large as in 2023 across most of Canada, with more than two-fold increases in the east and southwest. The long fire season was more than five times as likely and the large areas…
Publication Type: Journal Article
Comparing ground-based lightning detection networks near wildfire points-of-origin
Year: 2024
Lightning detection and attribution to wildfire ignitions is a critical component of fire management worldwide to both reduce hazards of wildfire to values-at-risk and to enhance the potential for wildland fire to provide resource benefits in fire-adapted ecosystems. We compared two operational ground-based lightning detection networks used by fire managers to identify cloud-to-ground strokes within operationally-relevant distances (1.6 km) of the origins of 4408 western United States lightning-ignited wildfires spanning May–September 2020. Applying two sets of constraints–varying…
Publication Type: Journal Article
Biogeographic patterns of daily wildfire spread and extremes across North America
Year: 2024
Introduction: Climate change is predicted to increase the frequency of extreme single-day fire spread events, with major ecological and social implications. In contrast with well-documented spatio-temporal patterns of wildfire ignitions and perimeters, daily progression remains poorly understood across continental spatial scales, particularly for extreme single-day events (“blow ups”). Here, we characterize daily wildfire spread across North America, including occurrence of extreme single-day events, duration and seasonality of fire and extremes, and ecoregional climatic…
Publication Type: Journal Article
Exploring the use of satellite Earth observation active wildland fire hotspot data via open access web platforms
Year: 2024
Globally, managing wildland fire is increasing in complexity. Satellite Earth Observation (EO) data, specifically active fire ‘hotspot’ data, is often used to inform wildland fire management. This study explores hotspot data usage via web traffic data (‘user counts’) for the FIRMS, GWIS and EFFIS web portals between September 2019 and April 2023. Global active fire data use is characterized by multi-month periods of relatively low, stable user counts, interspersed with periodic spikes (4.1x median monthly activity) of activity broadly aligned with the North American / European fire season (…
Publication Type: Journal Article
Evaluating driving behavior patterns during wildfire evacuations in wildland-urban interface zones using connected vehicles data
Year: 2024
Wildfire risk is increasing all over the world, particularly in the western United States and the communities in wildland-urban interface (WUI) areas are at the greatest risk of fire. Understanding the driving behavior of individuals to evacuate fire-affected WUI areas is important as the evacuees may encounter low visibility and difficult driving conditions due to burning material and steep topography. This study investigates the driving behavior patterns of individuals during historical wildfire events in rural and urban areas with mandatory evacuation orders using a connected vehicle…
Publication Type: Journal Article
Rare and highly destructive wildfires drive human migration in the U.S.
Year: 2024
The scale of wildfire impacts to the built environment is growing and will likely continue under rising average global temperatures. We investigate whether and at what destruction threshold wildfires have influenced human mobility patterns by examining the migration effects of the most destructive wildfires in the contiguous U.S. between 1999 and 2020. We find that only the most extreme wildfires (258+ structures destroyed) influenced migration patterns. In contrast, the majority of wildfires examined were less destructive and did not cause significant changes to out- or in-migration. These…
Economic Impacts of Fire, Public Perceptions of Fire and Smoke, Social and Community Impacts of Fire
Publication Type: Journal Article
Evidence for Wildland Fire Smoke Transport of Microbes From Terrestrial Sources to the Atmosphere and Back
Year: 2024
Smoke from wildland fires contains more diverse, viable microbes than typical ambient air, yet little is known about the sources and sinks of smoke-borne microorganisms. Data from molecular-based surveys suggest that smoke-borne microorganisms originate from material associated with the vegetation and underlying soils that becomes aerosolized during combustion, however, the sources of microbes in smoke have not yet been experimentally assessed. To elucidate this link, we studied high-intensity forest fires in the Fishlake National Forest, Utah, USA and applied source-sink modeling to…
Publication Type: Journal Article