Research Database
Displaying 101 - 120 of 165
Embracing Complexity to Advance the Science of Wildland Fire Behavior
Year: 2018
Wildland fire behavior research has largely focused on the steady-state interactions between fuels and heat fluxes. Contemporary research is revealing new questions outside the bounds of this simplified approach. Here, we explore the complex interactions taking place beyond steady-state assumptions through acknowledging the manufactured separation of research disciplines in fire science and the dynamic interactions that unfold when these separations are removed. Through a series of examples spanning at least four research disciplines and three ranges of spatial scale, we illustrate that by…
Publication Type: Journal Article
The influence of fire history on soil nutrients and vegetation cover in mixed-severity fire regime forests of the eastern Olympic Peninsula, Washington, USA
Year: 2018
The rain shadow forests of the Olympic Peninsula exemplify a mixed-severity fire regime class in the midst of a highly productive landscape where spatial heterogeneity of fire severity may have significant implications for below and aboveground post-fire recovery. The purpose of this study was to quantify the impacts of wildfire on forest soil carbon (C) and nitrogen (N) pools and assess the relationship of pyrogenic carbon (PyC) to soil processes in this mixed-severity ecosystem. We established a 112-year fire chronosequence with nine similar forest stands ranging in time since lastfire (TSF…
Publication Type: Journal Article
The Weather Conditions for Desired Smoke Plumes at a FASMEE Burn Site
Year: 2018
Weather is an important factor that determines smoke development, which is essential information for planning smoke field measurements. This study identifies the synoptic systems that would favor to produce the desired smoke plumes for the Fire and Smoke Model Evaluation Experiment (FASMEE). Daysmoke and PB-Piedmont (PB-P) models are used to simulate smoke plume evolution during the day time and smoke drainage and fog formation during the nighttime for hypothetical prescribed burns on 5–8 February 2011 at the Stewart Army Base in the southeastern United States. Daysmoke simulation is…
Publication Type: Journal Article
Synthesis of science to inform land management within the Northwest Forest Plan area: executive summary
Year: 2018
This is the executive summary of a three-volume science synthesis that addresses various ecological and social concerns regarding management of federal forests encompassed by the Northwest Forest Plan (NWFP). Land managers with the U.S. Forest Service provided questions that helped guide preparation of the synthesis. It builds on the 10-, 15-, and 20-year NWFP monitoring reports and synthesizes the vast body of relevant scientific literature that has accumulated in the 24 years since the NWFP was initiated. Here we summarize scientific findings and considerations for management that were…
Climate Change and Fire, Communicating about Fire, Fish and Wildlife Habitat, Restoration and Hazardous Fuel Reduction
Publication Type: Report
Defining extreme wildfire events: Difficulties, challenges, and impacts
Year: 2018
Every year worldwide some extraordinary wildfires occur, overwhelming suppression capabilities, causing substantial damages, and often resulting in fatalities. Given their increasing frequency, there is a debate about how to address these wildfires with significant social impacts, but there is no agreement upon terminology to describe them. The concept of extreme wildfire event (EWE) has emerged to bring some coherence on this kind of events. It is increasingly used, often as a synonym of other terms related to wildfires of high intensity and size, but its definition remains elusive. The goal…
Publication Type: Journal Article
Pyro-Ecophysiology: Shifting the Paradigm of Live Wildland Fuel Research
Year: 2018
The most destructive wildland fires occur in mixtures of living and dead vegetation, yet very little attention has been given to the fundamental differences between factors that control their flammability. Historically, moisture content has been used to evaluate the relative flammability of live and dead fuels without considering major, unreported differences in the factors that control their variations across seasons and years. Physiological changes at both the leaf and whole plant level have the potential to explain ignition and fire behavior phenomena in live fuels that have been poorly…
Publication Type: Journal Article
A comparison of the US National Fire Danger Rating System (NFDRS) with recorded fire occurrence and final fire size
Year: 2018
Most previous research has assessed the ability of the National Fire Danger Rating System (NFDRS) to portray fire activity at either single sites or on small spatial scales, despite it being a nation-wide system. This study seeks to examine the relationships between a set of NFDRS fire danger indices (Fire Danger Ratings, Staffing Level and the Ignition Component) and measures of fire activity (fire occurrence and final fire size) across the entire conterminous US over an 8-year period. We reveal that different regions of the US display different levels of correspondence between each of the…
Publication Type: Journal Article
Wildfire risk reduction in the United States: Leadership staff perceptions of local fire department roles and responsibilities
Year: 2018
As wildland fires have had increasing negative impacts on a range of human values, in many parts of the United States (U.S.) and around the world, collaborative risk reduction efforts among agencies, homeowners, and fire departments are needed to improve wildfire safety and mitigate risk. Using interview data from 46 senior officers from local fire departments around the U.S., we examine how leadership staff view their departments’ roles and responsibilities in wildfire risk reduction. Overall, our findings indicate that local fire personnel are often performing a variety of mitigation tasks…
Publication Type: Journal Article
Advancing the Science of Wildland Fire Dynamics Using Process-Based Models
Year: 2018
As scientists and managers seek to understand fire behavior in conditions that extend beyond the limits of our current empirical models and prior experiences, they will need new tools that foster a more mechanistic understanding of the processes driving fire dynamics and effects. Here we suggest that process-based models are powerful research tools that are useful for investigating a large number of emerging questions in wildland fire sciences. These models can play a particularly important role in advancing our understanding, in part, because they allow their users to evaluate the potential…
Publication Type: Journal Article
Sustainability and wildland fire: The origins of Forest Service Wildland Fire Research
Year: 2017
On June 1, 2015, the Forest Service, an agency of the U.S. Department of Agriculture (USDA), celebrated the 100th anniversary of the Branch of Research. Established in 1915 to centralize and elevate the pursuit of research throughout the agency, the Branch of Research focused on everything from silvicultural investigations conducted by the experiment stations to industrial studies and wood product improvement at the Madison, WI, Forest Products Laboratory. From its beginning, the branch oversaw ongoing research designed to develop insights, methods, and technologies to help foresters and land…
Publication Type: Report
Cover of tall trees best predicts California spotted owl habitat
Year: 2017
Restoration of western dry forests in the USA often focuses on reducing fuel loads. In the range of the spotted owl, these treatments may reduce canopy cover and tree density, which could reduce preferred habitat conditions for the owl and other sensitive species. In particular, high canopy cover (≥70%) has been widely reported to be an important feature of spotted owl habitat, but averages of stand-level forest cover do not provide important information on foliage height and gap structure. To provide better quantification of canopy structure, we used airborne LiDAR imagery to identify canopy…
Publication Type: Journal Article
NFPA’s Wildland/Urban Interface: Fire Department Wildfire Preparedness and Readiness Capabilities – Final Report
Year: 2017
The increasing frequency and intensity of wildland and wildland-urban interface (WUI) fires have become a significant concern in many parts of the United States and around the world. To address and manage this WUI fire risk, local fire departments around the country have begun to acquire the appropriate equipment and offer more training in wildfire response and suppression. There is also growing recognition of the importance of wildfire mitigation and public outreach about community risk reduction. Using survey and interview data from 46 senior officers from local fire departments around the…
decision making, management, wildland fire, Wildland-urban interface (WUI), fire suppression, adaptation
Publication Type: Report
Returning Fire to the Land—Celebrating Traditional Knowledge and Fire
Year: 2017
North American tribes have traditional knowledge about fire effects on ecosystems, habitats, and resources. For millennia, tribes have used fire to promote valued resources. Sharing our collective understanding of fire, derived from traditional and western knowledge systems, can benefit landscapes and people. We organized two workshops to investigate how traditional and western knowledge can be used to enhance wildland fire and fuels management and research. We engaged tribal members, managers, and researchers to formulate solutions regarding the main topics identified as important to tribal…
Publication Type: Journal Article
Tamm Review: Shifting global fire regimes: Lessons from reburns and research needs
Year: 2017
Across the globe, rising temperatures and altered precipitation patterns have caused persistent regional droughts, lengthened fire seasons, and increased the number of weather-driven extreme fire events. Because wildfires currently impact an increasing proportion of the total area burned, land managers need to better understand reburns – in which previously burned areas can modify the patterns and severity of subsequent fires. For example, knowing how long past fire boundaries can function as barriers to fire spread may empower decision-makers to manage some wildfires as large-scale fuel…
Publication Type: Journal Article
A Century of Wildland Fire Research - Contributions to Long-term Approaches for Wildland Fire Management: Proceedings of a Workshop
Year: 2017
Although ecosystems, humans, and fire have coexisted for millennia, changes in geology, ecology, hydrology, and climate as well as sociocultural, regulatory, and economic factors have converged to make wildland fire management exceptionally challenging for U.S. federal, state, and local authorities. Given the mounting, unsustainable costs and difficulty translating existing wildland fire science into policy, the National Academies of Sciences, Engineering, and Medicine organized a 1-day workshop to focus on how a century of wildland fire research can contribute to improving wildland fire…
Publication Type: Report
A review of challenges to determining and demonstrating efficiency of large fire management
Year: 2017
Characterising the impacts of wildland fire and fire suppression is critical information for fire management decision-making. Here, we focus on decisions related to the rare larger and longer-duration fire events, where the scope and scale of decision-making can be far broader than initial response efforts, and where determining and demonstrating efficiency of strategies and actions can be particularly troublesome. We organise our review around key decision factors such as context, complexity, alternatives, consequences and uncertainty, and for illustration contrast fire management in…
Publication Type: Journal Article
Weather, fuels, and topography impede wildland fire spread in western US landscapes
Year: 2016
As wildland fire activity continues to surge across the western US, it is increasingly important that we understand and quantify the environmental drivers of fire and how they vary across ecosystems. At daily to annual timescales, weather, fuels, and topography are known to influence characteristics such as area burned and fire severity. An understudied facet, however, concerns how these factors inhibit fire spread and thereby contribute to the formation of fire boundaries. We evaluated how weather, fuels, and topography impeded fire spread in four large study areas in the western US, three…
Publication Type: Journal Article
Progress in wilderness fire science: Embracing complexity
Year: 2016
Wilderness has played an invaluable role in the development of wildland fire science. Since Agee’s review of the subject 15 years ago, tremendous progress has been made in the development of models and data, in understanding the complexity of wildland fire as a landscape process, and in appreciating the social factors that influence the use of wilderness fire. Regardless of all we have learned, though, the reality is that fire remains an extraordinarily complex process with variable effects that create essential heterogeneity in ecosystems. Whereas some may view this variability as a…
Publication Type: Journal Article
Megafires: an emerging threat to old-forest species
Year: 2016
Increasingly frequent “megafires” in North America's dry forests have prompted proposals to restore historical fire regimes and ecosystem resilience. Restoration efforts that reduce tree densities (eg via logging) could have collateral impacts on declining old-forest species, but whether these risks outweigh the potential effects of large, severe fires remains uncertain. We demonstrate the effects of a 2014 California megafire on an iconic old-forest species, the spotted owl (Strix occidentalis). The probability of owl site extirpation was seven times higher after the fire (0.88) than before…
Publication Type: Journal Article
Managed wildfire effects on forest resilience and water in the Sierra Nevada
Year: 2016
Fire suppression in many dry forest types has left a legacy of dense, homogeneous forests. Such landscapes have high water demands and fuel loads, and when burned can result in catastrophically large fires. These characteristics are undesirable in the face of projected warming and drying in the western US. Alternative forest and fire treatments based on managed wildfire—a regime in which fires are allowed to burn naturally and only suppressed under defined management conditions—offer a potential strategy to ameliorate the effects of fire suppression. Understanding the long-term effects of…
Publication Type: Journal Article
Pagination
- First page
- Previous page
- …
- 4
- 5
- 6
- 7
- 8
- …
- Next page
- Last page