Embracing Complexity to Advance the Science of Wildland Fire Behavior

TitleEmbracing Complexity to Advance the Science of Wildland Fire Behavior
Publication TypeJournal Article
Year of Publication2018
AuthorsYedinak, KM
Secondary AuthorsStrand, EK
Tertiary AuthorsJ Hiers, K
Subsidiary AuthorsJ Varner, M
Start Page20
Keywordscombustion kinetics, complexity, energy flux, fire-atmosphere, flammability, heterogeneity, non-steady state, phase space, technical reports and journal articles

Wildland fire behavior research has largely focused on the steady-state interactions between fuels and heat fluxes. Contemporary research is revealing new questions outside the bounds of this simplified approach. Here, we explore the complex interactions taking place beyond steady-state assumptions through acknowledging the manufactured separation of research disciplines in fire science and the dynamic interactions that unfold when these separations are removed. Through a series of examples spanning at least four research disciplines and three ranges of spatial scale, we illustrate that by precisely defining parameters in a way that holds across scales and relaxing one steady-state simplification, we begin to capture the inherent variability that has largely eluded the fire behavior community. Through exploring examples of “deep interdependence,” we make the case that fire behavior science is well equipped to launch forward into more complex lines of inquiry.