Research Database
Displaying 201 - 220 of 301
Assessment of wildland fire impacts on watershed annual water yield: Analytical framework and case studies in the United States
Year: 2016
More than 50% of water supplies in the conterminous United States originate on forestland or rangeland, and are potentially under increasing stress as a result of larger and more severe wildfires. Little is known however about the long-term impacts of fire on annual water yield, and the role of climate variability within this context. We here propose a framework for evaluating wildland fire impacts on streamflow that combines double-mass analysis with new methods (change point analysis, climate elasticity modeling, and process-based modeling) to distinguish between multi-year fire and climate…
Publication Type: Journal Article
Climate-driven changes in forest succession and the influence of management on forest carbon dynamics in the Puget Lowlands of Washington State, USA
Year: 2016
Projecting the response of forests to changing climate requires understanding how biotic and abiotic controls on tree growth will change over time. As temperature and interannual precipitation variability increase, the overall forest response is likely to be influenced by species-specific responses to changing climate. Management actions that alter composition and density may help buffer forests against the effects of changing climate, but may require tradeoffs in ecosystem services. We sought to quantify how projected changes in climate and different management regimes would alter the…
Publication Type: Journal Article
Impact of anthropogenic climate change on wildfire across western US forests
Year: 2016
Increased forest fire activity across the western continental United States (US) in recent decades has likely been enabled by a number of factors, including the legacy of fire suppression and human settlement, natural climate variability, and human-caused climate change. We use modeled climate projections to estimate the contribution of anthropogenic climate change to observed increases in eight fuel aridity metrics and forest fire area across the western United States. Anthropogenic increases in temperature and vapor pressure deficit significantly enhanced fuel aridity across western US…
Publication Type: Journal Article
Quantifying the influence of previously burned areas on suppression effectiveness and avoided exposure: a case study of the Las Conchas Fire
Year: 2016
We present a case study of the Las Conchas Fire (2011) to explore the role of previously burned areas (wildfires and prescribed fires) on suppression effectiveness and avoided exposure. Methodological innovations include characterisation of the joint dynamics of fire growth and suppression activities, development of a fire line effectiveness framework, and quantification of relative fire line efficiencies inside and outside of previously burned areas. We provide descriptive statistics of several fire line effectiveness metrics. Additionally, we leverage burn probability modelling to examine…
Publication Type: Journal Article
Wildfire risk associated with different vegetation types within and outside wildland-urban interfaces
Year: 2016
Wildland-urban interfaces (WUIs) are areas where urban settlements and wildland vegetation intermingle, making the interaction between human activities and wildlife especially intense. Their relevance is increasing worldwide as they are expanding and are associated with fire risk. The WUI may affect the fire risk associated with the type of vegetation (land cover/land use; LULC), a well-known risk factor, due to differences in the type and intensity of human activities in different LULCs within and outside WUIs. No previous studies analyse this interaction between the effects of the WUI and…
Publication Type: Journal Article
Incorporating Anthropogenic Influences into Fire Probability Models: Effects of Human Activity and Climate Change on Fire Activity in California
Year: 2016
The costly interactions between humans and wildfires throughout California demonstrate the need to understand the relationships between them, especially in the face of a changing climate and expanding human communities. Although a number of statistical and process-based wildfire models exist for California, there is enormous uncertainty about the location and number of future fires, with previously published estimates of increases ranging from nine to fifty-three percent by the end of the century. Our goal is to assess the role of climate and anthropogenic influences on the state’s fire…
Publication Type: Journal Article
Review of the health effects of wildland fire smoke on wildland firefighters and the public
Year: 2016
Each year, the general public and wildland firefighters in the US are exposed to smoke from wildland fires. As part of an effort to characterize health risks of breathing this smoke, a review of the literature was conducted using five major databases, including PubMed and MEDLINE Web of Knowledge, to identify smoke components that present the highest hazard potential, the mechanisms of toxicity, review epidemiological studies for health effects and identify the current gap in knowledge on the health impacts of wildland fire smoke exposure. Respiratory events measured in time series studies as…
Publication Type: Journal Article
Forest fire policy: change conventional thinking of smoke management to prioritize long-term air quality and public health
Year: 2016
Wildland fire smoke is inevitable. Size and intensity of wildland fires are increasing in the western USA. Smoke-free skies and public exposure to wildland fire smoke have effectively been postponed through suppression. The historic policy of suppression has systematically both instilled a public expectation of a smoke-free environment and deferred emissions through increased forest fuel loads that will lead to an eventual large spontaneous release. High intensity fire smoke is impacting a larger area including high density urban areas. Policy change has largely attempted to provide the…
Publication Type: Journal Article
Risk management: Core principles and practices, and their relevance to wildland fire
Year: 2016
The Forest Service, U.S. Department of Agriculture faces a future of increasing complexity and risk, pressing financial issues, and the inescapable possibility of loss of human life. These issues are perhaps most acute for wildland fire management, the highest risk activity in which the Forest Service engages. Risk management (RM) has long been put forth as an appropriate approach for addressing fire, and agency-wide adoption of RM principles and practices will be critical to bring about necessary change and improve future decisions. To facilitate more comprehensive adoption of formal RM…
Publication Type: Report
1984–2010 trends in fire burn severity and area for the conterminous US
Year: 2016
Burn severity products created by the Monitoring Trends in Burn Severity (MTBS) project were used to analyse historical trends in burn severity. Using a severity metric calculated by modelling the cumulative distribution of differenced Normalized Burn Ratio (dNBR) and Relativized dNBR (RdNBR) data, we examined burn area and burn severity of 4893 historical fires (1984–2010) distributed across the conterminous US (CONUS) and mapped by MTBS. Yearly mean burn severity values (weighted by area), maximum burn severity metric values, mean area of burn, maximum burn area and total burn area were…
Publication Type: Journal Article
Weather, fuels, and topography impede wildland fire spread in western US landscapes
Year: 2016
As wildland fire activity continues to surge across the western US, it is increasingly important that we understand and quantify the environmental drivers of fire and how they vary across ecosystems. At daily to annual timescales, weather, fuels, and topography are known to influence characteristics such as area burned and fire severity. An understudied facet, however, concerns how these factors inhibit fire spread and thereby contribute to the formation of fire boundaries. We evaluated how weather, fuels, and topography impeded fire spread in four large study areas in the western US, three…
Publication Type: Journal Article
Progress in wilderness fire science: Embracing complexity
Year: 2016
Wilderness has played an invaluable role in the development of wildland fire science. Since Agee’s review of the subject 15 years ago, tremendous progress has been made in the development of models and data, in understanding the complexity of wildland fire as a landscape process, and in appreciating the social factors that influence the use of wilderness fire. Regardless of all we have learned, though, the reality is that fire remains an extraordinarily complex process with variable effects that create essential heterogeneity in ecosystems. Whereas some may view this variability as a…
Publication Type: Journal Article
Megafires: an emerging threat to old-forest species
Year: 2016
Increasingly frequent “megafires” in North America's dry forests have prompted proposals to restore historical fire regimes and ecosystem resilience. Restoration efforts that reduce tree densities (eg via logging) could have collateral impacts on declining old-forest species, but whether these risks outweigh the potential effects of large, severe fires remains uncertain. We demonstrate the effects of a 2014 California megafire on an iconic old-forest species, the spotted owl (Strix occidentalis). The probability of owl site extirpation was seven times higher after the fire (0.88) than before…
Publication Type: Journal Article
Restoration impacts on fuels and fire potential in a dryland tropical ecosystem dominated by the invasive grass Megathyrsus maximus
Year: 2015
Ecological restoration often attempts to promote native species while managing for disturbances such as fire and non-native invasions. The goal of this research was to investigate whether restoration of a non-native, invasive Megathyrsus maximus (guinea grass) tropical grassland could simultaneously promote native species and reduce fire potential. Megathyrsus maximus was suppressed with herbicide, and three suites of native species—each including the same groundcover and shrub, and one of three tree species—were outplanted in a randomized, complete block design that also included herbicide…
Publication Type: Journal Article
Wildland Fuel Fundamentals and Applications
Year: 2015
A new era in wildland fuel sciences is now evolving in such a way that fire scientists and managers need a comprehensive understanding of fuels ecology and science to fully understand fire effects and behavior on diverse ecosystem and landscape characteristics. This is a reference book on wildland fuel science; a book that describes fuels and their application in land management. There has never been a comprehensive book on wildland fuels; most wildland fuel information was put into wildland fire science and management books as separate chapters and sections. This book is the first to…
Publication Type: Book
Categorizing the social context of the wildland urban interface: Adaptive capacity for wildfire and community "archetypes"
Year: 2015
Understanding the local context that shapes collective response to wildfire risk continues to be a challenge for scientists and policymakers. This study utilizes and expands on a conceptual approach for understanding adaptive capacity to wildfire in a comparison of 18 past case studies. The intent is to determine whether comparison of local social context and community characteristics across cases can identify community "archetypes" that approach wildfire planning and mitigation in consistently different ways. Identification of community archetypes serves as a potential strategy for…
Publication Type: Journal Article
Modeling wildfire regimes in forest landscapes: abstracting a complex reality
Year: 2015
Fire is a natural disturbance that is nearly ubiquitous in terrestrial ecosystems. The capacity to burn exists virtually wherever vegetation grows. In some forested landscapes, fire is a principal driver of rapid ecosystem change, resetting succession ( McKenzie et al. 1996a ) and changing wildlife habitat (Cushman et al. 2011 ), hydrology ( Feikema et al. 2013 ), element cycles ( Smithwick 2011 ), and even landforms (Pierce et al. 2004 ). In boreal forests, for example, recurring wildfi res are the main cause of compositional and spatial patterns ( Wein and MacLean 1983 ), where a fi re-…
Publication Type: Book Chapter
Modeling the direct effect of salvage logging on long-term temporal fuel dynamics in dry-mixed conifer forests
Year: 2015
Salvage logging has been proposed to reduce post-fire hazardous fuels and mitigate re-burn effects, but debate remains about its effectiveness when considering fuel loadings are dynamic, and re-burn occurrence is stochastic, in time. Therefore, evaluating salvage loggings capacity to reduce hazardous fuels requires estimating fuel loadings in unmanipulated and salvaged stands over long time periods. We sampled for snag dynamics, decomposition rates, and fuel loadings within unmanipulated high-severity portions of 7 fires, spanning a 24-year chronosequence, in dry-mixed conifer forests of…
Publication Type: Journal Article
A review of the challenges and opportunities in estimating above ground forest biomass using tree-level models
Year: 2015
Accurate biomass measurements and analyses are critical components in quantifying carbon stocks and sequestration rates, assessing potential impacts due to climate change, locating bio-energy processing plants, and mapping and planning fuel treatments. To this end, biomass equations will remain a key component of future carbon measurements and estimation. As researchers in biomass and carbon estimation, we review the present scenario of aboveground biomass estimation, focusing particularly on estimation using tree-level models and identify some cautionary points that we believe will improve…
Publication Type: Journal Article
Modeling spatial and temporal dynamics of wind flow and potential fire behavior following a mountain pine beetle outbreak in a lodgepole pine forest
Year: 2015
Patches of live, dead, and dying trees resulting from bark beetle-caused mortality alter spatial and temporal variability in the canopy and surface fuel complex through changes in the foliar moisture content of attacked trees and through the redistribution of canopy fuels. The resulting heterogeneous fuels complexes alter within-canopy wind flow, wind fluctuations, and rate of fire spread. However, there is currently little information about the potential influence of different rates and patterns of mortality on wind flow and fire behavior following bark beetle outbreaks. In this study, we…
Publication Type: Journal Article
Pagination
- First page
- Previous page
- …
- 9
- 10
- 11
- 12
- 13
- …
- Next page
- Last page