Research Database
Displaying 61 - 80 of 103
Mapping the daily progression of large wildland fires using MODIS active fire data
Year: 2014
High temporal resolution information on burnt area is needed to improve fire behaviour and emissions models. We used the Moderate Resolution Imaging Spectroradiometer (MODIS) thermal anomaly and active fire product (MO(Y)D14) as input to a kriging interpolation to derive continuous maps of the timing of burnt area for 16 large wildland fires. For each fire, parameters for the kriging model were defined using variogram analysis. The optimal number of observations used to estimate a pixel’s time of burning varied between four and six among the fires studied. The median standard error from…
Publication Type: Journal Article
Five-year legacy of wildfire and salvage logging impacts on nutrient runoff and aquatic plant, invertebrate, and fish productivity
Year: 2014
Ecohydrological linkages between phosphorus (P) production, stream algae, benthic invertebrate, and fish communities were studied for 4 years after severe wildfire in the Rocky Mountains (Alberta, Canada). Mean concentrations of all forms of P (soluble reactive, total dissolved, particulate, and total) were 2 to 13 times greater in burned and post-fire salvage-logged streams than in unburned streams (p < 0.001). Post-disturbance recovery of P was slow with differences in P-discharge relationships still evident 5 years after the fire (p < 0.001). Coupled P and sediment interactions were…
Publication Type: Journal Article
Catchment-scale stream temperature response to land disturbance by wildfire governed by surface–subsurface energy exchange and atmospheric controls
Year: 2014
In 2003, the Lost Creek wildfire severely burned 21,000 hectares of forest on the eastern slopes of the Canadian Rocky Mountains. Seven headwater catchments with varying levels of disturbance (burned, post-fire salvage logged, and unburned) were instrumented as part of the Southern Rockies Watershed Project to measure streamflow, stream temperature, and meteorological conditions. From 2004 to 2010 mean annual stream temperature (Ts) was elevated 0.8–2.1 [1]C in the burned and post-fire salvage logged streams compared to the unburned streams. Mean daily maximum Ts was 1.0–3.0 [1]C warmer and…
Publication Type: Journal Article
Effectiveness of fuel treatments for mitigating wildfire risk and sequestering forest carbon: A case study in the Lake Tahoe Basin
Year: 2014
Fuel-reduction treatments are used extensively to reduce wildfire risk and restore forest diversity and function. In the near future, increasing regulation of carbon (C) emissions may force forest managers to balance the use of fuel treatments for reducing wildfire risk against an alternative goal of C sequestration. The objective of this study was to evaluate how long-term fuel treatments mitigate wildfires and affect forest C. For the Lake Tahoe Basin in the central Sierra Nevada, USA, fuel treatment efficiency was explored with a landscape-scale simulation model, LANDIS-II, using five fuel…
Publication Type: Journal Article
Wildfire and the Future of Water Supply
Year: 2014
In many parts of the world, forests provide high quality water for domestic, agricultural, industrial, and ecological needs, with water supplies in those regions inextricably linked to forest health. Wildfires have the potential to have devastating effects on aquatic ecosystems and community drinking water supply through impacts on water quantity and quality. In recent decades, a combination of fuel load accumulation, climate change, extensive droughts, and increased human presence in forests have resulted in increases in area burned and wildfire severity—a trend predicted to continue. Thus,…
Publication Type: Journal Article
Wildland fire emissions, carbon, and climate: Modeling fuel consumption
Year: 2014
Fuel consumption specifies the amount of vegetative biomass consumed during wildland fire. It is a two-stage process of pyrolysis and combustion that occurs simultaneously and at different rates depending on the characteristics and condition of the fuel, weather, topography, and in the case of prescribed fire, ignition rate and pattern. Fuel consumption is the basic process that leads to heat absorbing emissions called greenhouse gas and other aerosol emissions that can impact atmospheric and ecosystem processes, carbon stocks, and land surface reflectance. It is a critical requirement for…
Publication Type: Journal Article
The merits of prescribed fire outweigh potential carbon emission effects
Year: 2013
A White Paper developed by Association for Fire Ecology, International Association of Wildland Fire, Tall Timbers Research Station, and The Nature Conservancy.While North American ecosystems vary widely in their ecology and natural historical fire regimes, they are unified in benefitting from prescribed fire when judiciously applied with the goal of maintaining and restoring native ecosystem composition, structure, and function. On a modern landscape in which historical fire regimes cannot naturally occur due to fuel load build-up and resulting public safety concerns, the cornerstone…
Publication Type: Report
The relationship of post-fire white ash cover to surface fuel consumption
Year: 2013
White ash results from the complete combustion of surface fuels, making it a logically simple retrospective indicator of surface fuel consumption. However, the strength of this relationship has been neither tested nor adequately demonstrated with field measurements. We measured surface fuel loads and cover fractions of white ash and four other surface materials (green vegetation, brown non-photosynthetic vegetation, black char and mineral soil) immediately before and after eight prescribed fires in four disparate fuelbed types: boreal forest floor, mixed conifer woody slash, mixed conifer…
Publication Type: Journal Article
Do carbon offsets work? The role of forest management in greenhouse gas mitigation
Year: 2013
As forest carbon offset projects become more popular, professional foresters are providing their expertise to support them. But when several members of the Society of American Foresters questioned the science and assumptions used to design the projects, the organization decided to convene a task force to examine whether these projects can provide the intended climate benefits. The report details reasons to look for other solutions to greenhouse gas emission challenges. After synthesizing the latest available science, the authors challenge the underlying assumptions used to establish most…
Publication Type: Report
The relationship of large fire occurrence with drought and fire danger indices in the western USA, 1984-2008: the role of temporal scale
Year: 2013
The relationship between large fire occurrence and drought has important implications for fire prediction under current and future climates. This study’s primary objective was to evaluate correlations between drought and fire-danger-rating indices representing short- and long-term drought, to determine which had the strongest relationships with large fire occurrence at the scale of the western United States during the years 1984–2008. We combined 4–8-km gridded drought and fire-danger-rating indices with information on fires greater than 404.7 ha (1000 acres). To account for differences in…
Publication Type: Journal Article
Foliar moisture content variations in lodgepole pine over the diurnal cycle during the red stage of mountain pine beetle attack
Year: 2013
Widespread outbreaks of the mountain pine beetle (Dendroctonus ponderosae Hopkins) in the lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) forests of North America have produced stands with significant levels of recent tree mortality. The needle foliage from recently attacked trees typically turns red within one to two years of attack indicating successful colonization by the beetle and tree death. Attempts to model crown fire potential in these stands have assumed that the moisture content of dead foliage responds similarly to changes in air temperature and relative…
Publication Type: Journal Article
Predicting Dry Lightning Risk Nationwide
Year: 2012
Meteorologists developed two formulas to predict the probability of dry lightning throughout the continental United States and Alaska and parts of Canada. Predictions are made daily and are accessible through the web at http://www.airfire.org/tools/daily-fi re-weather/dry-lightning-probability. The emphasis is on the western United States, where dry lightning is a more common occurrence. Predictions are based on identifying days on which lightning is expected and separately determining whether there is likely to be at least 1/10th inch of accompanying rain. The formulas are run with the…
Publication Type: Report
Carbon Outcomes from Fuels Treatment and Bioenergy Production in a Sierra Nevada Forest
Year: 2012
In temperate conifer forests of the Western USA, there is active debate whether fuels reduction treatments and bioenergy production result in decreased carbon emissions and increased carbon sequestration compared to a no-action alternative. To address this debate over net carbon stocks, we performed a carbon life-cycle analysis on data from a fuels reduction treatment in a temperate, dry conifer forest in the northern Sierra Nevada of California, USA. The analysis tracks the net ecosystem carbon balance over 50 years for two scenarios (1) fuels reduction treatment combined with bioenergy…
Publication Type: Journal Article
Seasonal variation in surface fuel moisture between unthinned and thinned mixed conifer forest, northern California, USA
Year: 2012
Reducing stand density is often used as a tool for mitigating the risk of high-intensity crown fires. However, concern has been expressed that opening stands might lead to greater drying of surface fuels, contributing to increased fire risk. The objective of this study was to determine whether woody fuel moisture differed between unthinned and thinned mixed-conifer stands. Sections of logs representing the 1000- and 10 000-h fuel sizes were placed at 72 stations within treatment units in the fall (autumn) of 2007. Following snow-melt in 2008, 10-h fuel sticks were added and all fuels were…
Publication Type: Journal Article
Soil-mediated effects of subambient to increased carbon dioxide on grassland productivity
Year: 2012
Grasslands are structured by climate and soils, and are increasingly affected by anthropogenic changes, including rising atmospheric CO 2 concentrations. CO 2 enrichment can alter grassland ecosystem function both directly and through indirect, soil-specific effects on moisture, nitrogen availability and plant species composition, potentially leading to threshold change in ecosystem properties. Here we show that the increase in aboveground net primary productivity (ANPP) with CO 2 enrichment depends strongly on soil type. We found that the ANPP-CO 2 response of grassland was 2.5× greater on…
Publication Type: Journal Article
The Long-Term Effects of Wildfire and Post-Fire Vegetation on Sierra Nevada Forest Soils
Year: 2012
This paper compares carbon (C) and nutrient contents in soils (Alfisols derived from andesite), forest floor and vegetation in a former fire (1960) and an adjacent forest in the Sagehen Watershed in the Sierra Nevada Mountains of California. Soils from the former fire (now occupied predominantly by Ceanothus velutinus, a nitrogen-fixing shrub) had significantly lower contents of extractable SO42− and P (both Bray and bicarbonate) but significantly greater contents of exchangeable Ca2+ than the adjacent forested site (dominated by Pinus jeffreyii). N data suggested that N fixation had occurred…
Publication Type: Journal Article
Strategic planning for instream flow restoration: a case study of potential climate change impacts in the central Columbia River basin
Year: 2012
We provide a case study prioritizing instream flow restoration activities by sub-basin according to the habitat needs of Endangered Species Act (ESA)-listed salmonids relative to climate change in the central Columbia River basin in Washington State (USA). The objective is to employ scenario analysis to inform and improve existing instream flow restoration projects. We assess the sensitivity of late summer (July, August, and September) flows to the following scenario simulations singly or in combination: climate change, changes in the quantity of water used for irrigation and possible changes…
Publication Type: Journal Article
Climate-Induced Changes in Lake Ecosystem Structure Inferred from Coupled Neo- and Paleoecological Approaches
Year: 2012
Over the 20th century, surface water temperatures have increased in many lake ecosystems around the world, but long-term trends in the vertical thermal structure of lakes remain unclear, despite the strong control that thermal stratification exerts on the biological response of lakes to climate change. Here we used both neo- and paleoecological approaches to develop a fossil-based inference model for lake mixing depths and thereby refine understanding of lake thermal structure change. We focused on three common planktonic diatom taxa, the distributions of which previous research suggests…
Publication Type: Journal Article
Arbuscular Mycorrhizal Fungi Increase Organic Carbon Decomposition Under Elevated CO2
Year: 2012
The extent to which terrestrial ecosystems can sequester carbon to mitigate climate change is a matter of debate. The stimulation of arbuscular mycorrhizal fungi (AMF) by elevated atmospheric carbon dioxide (CO 2 ) has been assumed to be a major mechanism facilitating soil carbon sequestration by increasing carbon inputs to soil and by protecting organic carbon from decomposition via aggregation. We present evidence from four independent microcosm and field experiments demonstrating that CO 2 enhancement of AMF results in considerable soil carbon losses. Our findings challenge the assumption…
Publication Type: Journal Article
Integrating Theoretical Climate and Fire Effects on Savanna and Forest Systems
Year: 2012
The role of fire and climate in determining savanna and forest distributions requires comprehensive theoretical reevaluation. Empirical studies show that climate constrains maximum tree cover and that fire feedbacks can reduce tree cover substantially, but neither the stability nor the dynamics of these systems are well understood. A theoretical integration of rainfall effects with fire processes in particular is lacking. We use simple, well-supported assumptions about the percolation dynamics of fire spread and the demographic effects of climate and fire on trees to build a dynamic model…
Publication Type: Journal Article