Research Database
Displaying 21 - 40 of 141
Changing fire regimes in the Great Basin USA
Year: 2025
Wildfire is a natural disturbance in landscapes of the Western United States, but the effects and extents of fire are changing. Differences between historical and contemporary fire regimes can help identify reasons for observed changes in landscape composition. People living and working in the Great Basin, USA, are observing altered fire conditions, but spatial information about the degree and direction of change and departure from historical fire regimes is lacking. This study estimates how fire regimes have changed in the major Great Basin vegetation types over the past 60 years with…
Publication Type: Journal Article
Modeling the probability of bark beetle-caused tree mortality as a function of watershed-scale host species presence and basal area
Year: 2025
In recent decades, bark beetle outbreaks have caused mass tree mortality in western US forests, which has led to altered wildfire characteristics, hydrological processes, and forest carbon dynamics. Understanding spatial variability in forest susceptibility to bark beetle outbreaks in the western US could inform strategic forest management to reduce wildfire risk, manage forest carbon, and plan for altered hydrology. The susceptibility of a forest stand to mortality by bark beetles depends on the availability and characteristics of trees of the host tree species. For multiple bark beetle…
Publication Type: Journal Article
Historical pyrodiversity in Douglas-fir forests of the southern Cascades of Oregon, USA
Year: 2024
Our understanding of forest dynamics and successional pathways in coastal Douglas-fir (Pseudotsuga menziesii var menziesii) forests with relatively frequent mixed-severity fires is limited by a lack of annually precise dendroecological reconstructions that combine records of historical fires and tree establishment. The processes by which old-forest heterogeneity developed under historical fire regimes with recurrent low- and moderate-severity fires has not been well studied at fine temporal scales and across spatial scales. We developed crossdated multi-century records of fire and…
Publication Type: Journal Article
Characterizing post-fire delayed tree mortality with remote sensing: sizing up the elephant in the room
Year: 2024
BackgroundDespite recent advances in understanding the drivers of tree-level delayed mortality, we lack a method for mapping delayed mortality at landscape and regional scales. Consequently, the extent, magnitude, and effects of delayed mortality on post-fire landscape patterns of burn severity are unknown. We introduce a remote sensing approach for mapping delayed mortality based on post-fire decline in the normalized burn ratio (NBR). NBR decline is defined as the change in NBR between the first post-fire measurement and the minimum NBR value up to 5 years post-fire for each pixel…
Publication Type: Journal Article
Indigenous pyrodiversity promotes plant diversity
Year: 2024
Pyrodiversity (temporally and spatially diverse fire histories) is thought to promote biodiversity by increasing environmental heterogeneity and replicating Indigenous fire regimes, yet studies of pyrodiversity-biodiversity relationships from areas under active Indigenous fire stewardship are rare. Here, we explored whether Indigenous pyrodiversity promoted plant richness and diversity in an arid ecosystem from north-western Australia. We selected landscapes that ranged from highly pyrodiverse and under active Indigenous burning to more coarse-scale and less diverse mosaics under lightning…
Publication Type: Journal Article
Hydrometeorology-wildfire relationship analysis based on a wildfire bivariate probabilistic framework in different ecoregions of the continental United States
Year: 2024
Wildfires are a natural part of the ecosystem in the U.S.. It is vital to classify wildfires using a comprehensive approach that simultaneously considers wildfire activity (the number of wildfires) and burned area. On this basis, the influence of hydrometeorological variables on wildfires can be further analyzed. Therefore, this study first classified wildfire types using a wildfire bivariate probability framework. Then, by considering six hydrometeorological variables, the dominant hydrometeorological variables for different wildfire types in 17 ecoregions of the United States were…
Publication Type: Journal Article
Patterns, drivers, and implications of postfire delayed tree mortality in temperate conifer forests of the western United States
Year: 2024
Conifer forest resilience may be threatened by increasing wildfire activity and compound disturbances in western North America. Fire refugia enhance forest resilience, yet may decline over time due to delayed mortality—a process that remains poorly understood at landscape and regional scales. To address this uncertainty, we used high-resolution satellite imagery (5-m pixel) to map and quantify delayed mortality of conifer tree cover between 1 and 5 years postfire, across 30 large wildfires that burned within three montane ecoregions in the western United States. We used statistical models to…
Publication Type: Journal Article
Simulated Future Shifts in Wildfire Regimes in Moist Forests of Pacific Northwest, USA
Year: 2024
Fire is an integral natural disturbance in the moist temperate forests of the Pacific Northwest of the United States, but future changes remain uncertain. Fire regimes in this climatically and biophysically diverse region are complex, but typically climate limited. One challenge for interpreting potential changes is conveying projection uncertainty. Using projections of Energy Release Component (ERC) derived from 12 global climate models (GCM) that vary in performance relative to the region's contemporary climate, we simulated thousands of plausible fire seasons with the stochastic spatial…
Publication Type: Journal Article
Managing fire-prone forests in a time of decreasing carbon carrying capacity
Year: 2024
Changing climatic conditions are increasing overstory tree mortality in forests globally. This restructuring of the distribution of biomass is making already flammable forests more combustible, posing a major challenge for managing the transition to a lower biomass state. In western US dry conifer forests, tree density resulting from over a century of fire-exclusion practices has increased the risk of high-severity wildfire and susceptibility to climate-driven mortality. Reducing dead fuel loads will require new approaches to mitigate risk to the remaining live trees by preparing forests to…
Publication Type: Journal Article
Thinning and prescribed burning increase shade-tolerant conifer regeneration in a fire excluded mixed-conifer forest
Year: 2024
Fire exclusion and past management have altered the composition, structure, and function of frequent-fire forests throughout western North America. In mixed-conifer forests of the California Sierra Nevada, fire exclusion has exacerbated the effects of drought and endemic bark beetles, resulting in extensive mortality of fire-adapted pine species. Thinning and prescribed fire are widely used in these forests to reduce fuels, moderate fire behavior, and restore ecosystems. Tree regeneration influences future forest composition and structure, and therefore future resilience to disturbances, but…
Publication Type: Journal Article
Changing fire regimes and nuanced impacts on a critically imperiled species
Year: 2024
Wildfire activity throughout western North America is increasing which can have important consequences for species persistence. Native species have evolved disturbance-adapted traits that confer resilience to natural disturbance provided disturbances operate within their historical range of variability. This resilience can erode as disturbance regimes change and begin operating outside this range. We assessed wildfire impacts during 1987–2018 on the northern spotted owl, an imperiled species with complex relationships with late and early seral forest in the Pacific Northwest, USA. We analyzed…
Publication Type: Journal Article
Drought before fire increases tree mortality after fire
Year: 2024
Fire and drought are expected to increase in frequency and severity in temperate forests due to climate change. To evaluate whether drought increases the likelihood of post-fire tree mortality, we used a large database of tree survival and mortality from 32 years of wildland fires covering four dominant western North American conifers. We used Bayesian hierarchical modeling to predict the probability of individual tree mortality after fire based on species—Pinus contorta (lodgepole pine), Abies concolor (white fir), Pseudotsuga menziesii (Douglas-fir), and Pinus…
Publication Type: Journal Article
Fire history in northern Sierra Nevada mixed conifer forests across a distinct gradient in productivity
Year: 2024
BackgroundUnderstanding the role of fire in forested landscapes is fundamental to fire reintroduction efforts, yet few studies have examined how fire dynamics vary in response to interactions between local conditions, such as soil productivity, and more broadscale changes in climate. In this study, we examined historical fire frequency, seasonality, and spatial patterning in mixed conifer forests across a distinct gradient of soil productivity in the northern Sierra Nevada. We cross-dated 46 different wood samples containing 377 fire scars from 6 paired sites, located on and off of…
Publication Type: Journal Article
Pre-contact Indigenous fire stewardship: a research framework and application to a Pacific Northwest temperate rainforest
Year: 2024
Fire is a key disturbance process that shapes the structure and function of montane temperate rainforest in the Pacific Northwest (PNW). Recent research is revealing more frequent historical fire activity in the western central Cascades than expected by conventional theory. Indigenous peoples have lived in the PNW for millennia. However, Indigenous people's roles in shaping vegetation mosaics in montane temperate forests of the PNW has been overlooked, despite archaeological evidence of long-term, continuous human use of these landscapes. In this paper, we present a generalizable research…
Publication Type: Journal Article
Widespread exposure to altered fire regimes under 2 °C warming is projected to transform conifer forests of the Western United States
Year: 2023
Changes in wildfire frequency and severity are altering conifer forests and pose threats to biodiversity and natural climate solutions. Where and when feedbacks between vegetation and fire could mediate forest transformation are unresolved. Here, for the western United States, we used climate analogs to measure exposure to fire-regime change; quantified the direction and spatial distribution of changes in burn severity; and intersected exposure with fire-resistance trait data. We measured exposure as multivariate dissimilarities between contemporary distributions of fire frequency, burn…
Publication Type: Journal Article
Response of forest productivity to changes in growth and fire regime due to climate change
Year: 2023
Climate change is having complex impacts on the boreal forest, modulating both tree growth limiting factors and fire regime. However, these aspects are usually projected independently when estimating climate change effect on the boreal forest. Using a combination of 3 different methods, our goal is to assess the combined impact of changes in growth and fire regime due to climate change on the timber supply at the transitions from closed to open boreal coniferous forests in Québec, Canada. In order to identify the areas that are likely to be the most sensitive to climate change, we projected…
Publication Type: Journal Article
Climate influences on future fire severity: a synthesis of climate-fire interactions and impacts on fire regimes, high-severity fire, and forests in the western United States
Year: 2023
Background
Increases in fire activity and changes in fire regimes have been documented in recent decades across the western United States. Climate change is expected to continue to exacerbate impacts to forested ecosystems by increasing the frequency, size, and severity of wildfires across the western United States (US). Warming temperatures and shifting precipitation patterns are altering western landscapes and making them more susceptible to high-severity fire. Increases in large patches of high-severity fire can result in significant impacts to landscape processes and ecosystem function…
Publication Type: Journal Article
Does large area burned mean a bad fire year? Comparing contemporary wildfire years to historical fire regimes informs the restoration task in fire-dependent forests
Year: 2023
Wildfires and fire seasons are commonly rated largely on the simple metric of area burned (more hectares: bad). A seemingly paradoxical narrative frames large fire seasons as a symptom of a forest health problem (too much fire), while simultaneously stating that fire-dependent forests lack sufficient fire to maintain system resilience (too little fire). One key to resolving this paradox is placing contemporary fire years in the context of historical fire regimes, considering not only total fire area but also burn severity distributions. Historical regimes can also inform forest restoration…
Publication Type: Journal Article
Recent Douglas-fir Mortality in the Klamath Mountains Ecoregion of Oregon: Evidence for a Decline Spiral
Year: 2023
Recent increases in Douglas-fir (Psuedotsuga menziesii var. menziesii) mortality in the Klamath Mountains ecoregion raise concerns about the long-term resilience of Douglas-fir in the ecoregion and increased potential for uncharacteristic wildfire. We used data from the USDA Forest Service Aerial Detection Survey and ninety-six field plots to explore the relationships between physiographic and climate variables and Douglas-fir mortality. Our results provide strong evidence for a decline spiral in which Douglas-fir growing on hot, dry sites (predisposing factor) are further stressed by drought…
Publication Type: Journal Article
Changes in wildfire occurrence and risk to homes from 1990 through 2019 in the Southern Rocky Mountains, USA
Year: 2023
Wildfires and housing development have increased since the 1990s, presenting unique challenges for wildfire management. However, it is unclear how the relative influences of housing growth and changing wildfire occurrence have altered risk to homes, or the potential for wildfire to threaten homes. We used a random forests model to predict burn probability in relation to weather variables at 1-km resolution and monthly intervals from 1990 through 2019 in the Southern Rocky Mountains ecoregion. We quantified risk by combining the predicted burn probabilities with decadal housing density. We…
Publication Type: Journal Article