Research Database
Displaying 61 - 80 of 254
Prescribed fire placement matters more than increasing frequency and extent in a simulated Pacific Northwest landscape
Year: 2024
Prescribed fire has been increasingly promoted to reduce wildfire risk and restore fire-adapted ecosystems. Yet, the complexities of forest ecosystem dynamics in response to disturbances, climate change, and drought stress, combined with myriad social and policy barriers, have inhibited widespread implementation. Using the forest succession model LANDIS-II, we investigated the likely impacts of increasing prescribed fire frequency and extent on wildfire severity and forest carbon storage at local and landscape scales. Specifically, we ask how much prescribed fire is required to maintain…
Publication Type: Journal Article
Climate influences on future fire severity: a synthesis of climate-fire interactions and impacts on fire regimes, high-severity fire, and forests in the western United States
Year: 2023
Background
Increases in fire activity and changes in fire regimes have been documented in recent decades across the western United States. Climate change is expected to continue to exacerbate impacts to forested ecosystems by increasing the frequency, size, and severity of wildfires across the western United States (US). Warming temperatures and shifting precipitation patterns are altering western landscapes and making them more susceptible to high-severity fire. Increases in large patches of high-severity fire can result in significant impacts to landscape processes and ecosystem function…
Publication Type: Journal Article
An aridity threshold model of fire sizes and annual area burned in extensively forested ecoregions of the western USA
Year: 2023
Wildfire occurrence varies among regions and through time due to the long-term impacts of climate on fuel structure and short-term impacts on fuel flammability. Identifying the climatic conditions that trigger extensive fire years at regional scales can enable development of area burned models that are both spatially and temporally robust, which is crucial for understanding the impacts of past and future climate change. We identified region-specific thresholds in fire-season aridity that distinguish years with limited, moderate, and extensive area burned for 11 extensively forested ecoregions…
Publication Type: Journal Article
Long-term mortality burden trends attributed to black carbon and PM2·5 from wildfire emissions across the continental USA from 2000 to 2020: a deep learning modelling study
Year: 2023
Background
Long-term improvements in air quality and public health in the continental USA were disrupted over the past decade by increased fire emissions that potentially offset the decrease in anthropogenic emissions. This study aims to estimate trends in black carbon and PM2·5 concentrations and their attributable mortality burden across the USA.
Methods
In this study, we derived daily concentrations of PM2·5 and its highly toxic black carbon component at a 1-km resolution in the USA from 2000 to 2020 via deep learning that integrated big data from satellites, models, and surface…
Publication Type: Journal Article
Does large area burned mean a bad fire year? Comparing contemporary wildfire years to historical fire regimes informs the restoration task in fire-dependent forests
Year: 2023
Wildfires and fire seasons are commonly rated largely on the simple metric of area burned (more hectares: bad). A seemingly paradoxical narrative frames large fire seasons as a symptom of a forest health problem (too much fire), while simultaneously stating that fire-dependent forests lack sufficient fire to maintain system resilience (too little fire). One key to resolving this paradox is placing contemporary fire years in the context of historical fire regimes, considering not only total fire area but also burn severity distributions. Historical regimes can also inform forest restoration…
Publication Type: Journal Article
Exploring and Testing Wildfire Risk Decision-Making in the Face of Deep Uncertainty
Year: 2023
We integrated a mechanistic wildfire simulation system with an agent-based landscape change model to investigate the feedbacks among climate change, population growth, development, landowner decision-making, vegetative succession, and wildfire. Our goal was to develop an adaptable simulation platform for anticipating risk-mitigation tradeoffs in a fire-prone wildland–urban interface (WUI) facing conditions outside the bounds of experience. We describe how five social and ecological system (SES) submodels interact over time and space to generate highly variable alternative futures even within…
Publication Type: Journal Article
Changes in wildfire occurrence and risk to homes from 1990 through 2019 in the Southern Rocky Mountains, USA
Year: 2023
Wildfires and housing development have increased since the 1990s, presenting unique challenges for wildfire management. However, it is unclear how the relative influences of housing growth and changing wildfire occurrence have altered risk to homes, or the potential for wildfire to threaten homes. We used a random forests model to predict burn probability in relation to weather variables at 1-km resolution and monthly intervals from 1990 through 2019 in the Southern Rocky Mountains ecoregion. We quantified risk by combining the predicted burn probabilities with decadal housing density. We…
Publication Type: Journal Article
How Does Fire Suppression Alter the Wildfire Regime? A Systematic Review
Year: 2023
Fire suppression has become a fundamental approach for shaping contemporary wildfire regimes. However, a growing body of research suggests that aggressive fire suppression can increase high-intensity wildfires, creating the wildfire paradox. Whether the strategy always triggers the paradox remains a topic of ongoing debate. The role of fire suppression in altering wildfire regimes in diverse socio-ecological systems and associated research designs demands a deeper understanding. To reconcile these controversies and synthesize the existing knowledge, a systematic review has been conducted to…
Publication Type: Journal Article
Performance of Fire Danger Indices and Their Utility in Predicting Future Wildfire Danger Over the Conterminous United States
Year: 2023
Predicting current and future wildfire frequency and size is central to wildfire control and management. Multiple fire danger indices (FDIs) that incorporate weather and fuel conditions have been developed and utilized to support wildfire predictions and risk assessment. However, the scale-dependent performance of individual FDIs remains poorly understood, which leads to large uncertainty in the estimated fire sizes under climate change. Here, we calculate four commonly used FDIs over the conterminous United States using high-resolution (4 km) climate and fuel data sets for the 1984–2019…
Publication Type: Journal Article
Abrupt, climate-induced increase in wildfires in British Columbia since the mid-2000s
Year: 2023
In the province of British Columbia, Canada, four of the most severe wildfire seasons of the last century occurred in the past 7 years: 2017, 2018, 2021, and 2023. To investigate trends in wildfire activity and fire-conducive climate, we conducted an analysis of mapped wildfire perimeters and annual climate data for the period of 1919–2021. Results show that after a century-long decline, fire activity increased from 2005 onwards, coinciding with a sharp reversal in the wetting trend of the 20th century. Even as precipitation levels remain high, moisture deficits have increased due to rapid…
Publication Type: Journal Article
Fire-driven animal evolution in the Pyrocene
Year: 2023
Fire regimes are a major agent of evolution in terrestrial animals. Changing fire regimes and the capacity for rapid evolution in wild animal populations suggests the potential for rapid, fire-driven adaptive animal evolution in the Pyrocene. Fire drives multiple modes of evolutionary change, including stabilizing, directional, disruptive, and fluctuating selection, and can strongly influence gene flow and genetic drift. Ongoing and future research in fire-driven animal evolution will benefit from further development of generalizable hypotheses, studies conducted in highly responsive taxa,…
Publication Type: Journal Article
Postglacial vegetation and fire history with a high-resolution analysis of tephra impacts, High Cascade Range, Oregon, USA
Year: 2023
The postglacial history of vegetation, wildfire, and climate in the Cascade Range (Oregon) is only partly understood. This study uses high-resolution macroscopic charcoal and pollen analysis from a 13-m, 14,500 years sediment record from Gold Lake, located in a montane forest, to reconstruct forest vegetation and fire history. The occurrence of three tephra layers, including a 78-cm airfall Mazama tephra, as well as highly laminated segments, allows one to study tephra impacts on vegetation at a fine temporal resolution. From the Late Glacial through the Younger Dryas, pollen spectra vary…
Publication Type: Journal Article
DUET - Distribution of Understory using Elliptical Transport: A mechanistic model of leaf litter and herbaceous spatial distribution based on tree canopy structure
Year: 2023
Heterogeneity in surface fuels produced by overstory trees and understory vegetation is a major driver of fire behavior and ecosystem dynamics. Previous attempts at predicting tree leaf and needle litter accumulation over time have been constrained in scope to probabilistic models that consider a limited number of key factors influencing tree litter dispersal patterns and decomposition processes. We present a mechanistic model for estimating variation in surface fuels called the Distribution of Understory using Elliptical Transport (DUET). DUET uses a pre-generated voxelated canopy array and…
Publication Type: Journal Article
Atmospheric turbulence and wildland fires: a review
Year: 2023
The behaviour of wildland fires and the dispersion of smoke from those fires can be strongly influenced by atmospheric turbulent flow. The science to support that assertion has developed and evolved over the past 100+ years, with contributions from laboratory and field observations, as well as modelling experiments. This paper provides a synthesis of the key laboratory- and field-based observational studies focused on wildland fire and atmospheric turbulence connections that have been conducted from the early 1900s through 2021. Included in the synthesis are reports of anecdotal…
Publication Type: Journal Article
Less fuel for the next fire? Short-interval fire delays forest recovery and interacting drivers amplify effects
Year: 2023
As 21st-century climate and disturbance dynamics depart from historic baselines, ecosystem resilience is uncertain. Multiple drivers are changing simultaneously, and interactions among drivers could amplify ecosystem vulnerability to change. Subalpine forests in Greater Yellowstone (Northern Rocky Mountains, USA) were historically resilient to infrequent (100–300 year), severe fire. We sampled paired short-interval (<30-year) and long-interval (>125-year) post-fire plots most recently burned between 1988 and 2018 to address two questions: (1) How do short-interval fire, climate,…
Publication Type: Journal Article
Evidence for multi-decadal fuel buildup in a large California wildfire from smoke radiocarbon measurements
Year: 2023
In recent decades, there has been a significant increase in annual area burned in California's Sierra Nevada mountains. This rise in fire activity has prompted the need to understand how historical forest management practices affect fuel composition and emissions. Here we examined the total carbon (TC) concentration and radiocarbon abundance (Δ14C) of particulate matter (PM) emitted by the KNP Complex Fire, which occurred during California's 2021 wildfire season and affected several groves of giant sequoia trees in the southern Sierra Nevada. During a 26 h sampling period, we measured…
Publication Type: Journal Article
Modeling Wildland Firefighters’ Assessments of Structure Defensibility
Year: 2023
In wildland–urban interface areas, firefighters balance wildfire suppression and structure protection. These tasks are often performed under resource limitations, especially when many structures are at risk. To address this problem, wildland firefighters employ a process called “structure triage” to prioritize structure protection based on perceived defensibility. Using a dataset containing triage assessments of thousands of structures within the Western US, we developed a machine learning model that can improve the understanding of factors contributing to assessed structure defensibility.…
Publication Type: Journal Article
Refuge-yeah or refuge-nah? Predicting locations of forest resistance and recruitment in a fiery world
Year: 2023
Climate warming, land use change, and altered fire regimes are driving ecological transformations that can have critical effects on Earth's biota. Fire refugia—locations that are burned less frequently or severely than their surroundings—may act as sites of relative stability during this period of rapid change by being resistant to fire and supporting post-fire recovery in adjacent areas. Because of their value to forest ecosystem persistence, there is an urgent need to anticipate where refugia are most likely to be found and where they align with environmental conditions that support post-…
Publication Type: Journal Article
The century-long shadow of fire exclusion: Historical data reveal early and lasting effects of fire regime change on contemporary forest composition
Year: 2023
Historical logging practices and fire exclusion have reduced the proportion of pine in mixed-conifer forests of the western United States. To better understand pine’s decline, we investigate the impact of historical logging on the tree regeneration layer and subsequent stand development over almost a century of fire exclusion. We use a unique dataset derived from contemporary (∼2016) remeasurement of 440 historical quadrats (∼4m2) in the central Sierra Nevada, California, in which overstory trees, tree regeneration, and microsite conditions were measured and mapped both before and after…
Publication Type: Journal Article
A comparison of smoke modelling tools used to mitigate air quality impacts from prescribed burning
Year: 2023
Background. Prescribed fire is a land management tool used extensively across the United States. Owing to health and safety risks, smoke emitted by burns requires appropriate manage- ment. Smoke modelling tools are often used to mitigate air pollution impacts. However, direct comparisons of tools’ predictions are lacking. Aims. We compared three tools commonly used to plan prescribed burning projects: the Simple Smoke Screening Tool, VSmoke and HYSPLIT. Methods. We used each tool to model smoke dispersion from prescribed burns conducted by the North Carolina Division of Parks and Recreation…
Publication Type: Journal Article
Pagination
- First page
- Previous page
- …
- 2
- 3
- 4
- 5
- 6
- …
- Next page
- Last page