Research Database
Displaying 1 - 20 of 160
A cellular necrosis process model for estimating conifer crown scorch
Year: 2025
Fire-caused tree mortality has major impacts on forest ecosystems. One primary cause of post-fire tree mortality in non-resprouting species is crown scorch, the percentage of foliage in a crown that is killed by heat. Despite its importance, the heat required to kill foliage is not well-understood. We used the “lag” model to describe time- and temperature-dependent leaf cell necrosis as a method of predicting leaf scorch. The lag model includes two rate parameters that describe 1) the process of cells accumulating non-lethal damage, and 2) damage becoming lethal to the cell. To parameterize…
Publication Type: Journal Article
Fire Intensity and spRead forecAst (FIRA): A Machine Learning Based Fire Spread Prediction Model for Air Quality Forecasting Application
Year: 2025
Fire activities introduce hazardous impacts on the environment and public health by emitting various chemical species into the atmosphere. Most operational air quality forecast (AQF) models estimate smoke emissions based on the latest available satellite fire products, which may not represent real-time fire behaviors without considering fire spread. Hence, a novel machine learning (ML) based fire spread forecast model, the Fire Intensity and spRead forecAst (FIRA), is developed for AQF model applications. FIRA aims to improve the performance of AQF models by providing realistic, dynamic fire…
Publication Type: Journal Article
Short-term impacts of operational fuel treatments on modelled fire behaviour and effects in seasonally dry forests of British Columbia, Canada
Year: 2025
Background: In response to increasing risk of extreme wildfire across western North America, forest managers are proactively implementing fuel treatments.Aims: We assessed the efficacy of alternative combinations of thinning, pruning and residue fuel management to mitigate potential fire behaviour and effects in seasonally dry forests of interior British Columbia, Canada.Methods: Across five community forests, we measured stand attributes before and after fuel treatments in 2021 and 2022, then modelled fire behaviour and effects using the…
Publication Type: Journal Article
Evaluating fuelbreak strategies for compartmentalizing a fire-prone forest landscape in Alberta, Canada
Year: 2025
Large wildfires, the dominant natural disturbance type in North American forests, can cause significant damage to human infrastructure. One well-known approach to reduce the threat of wildfires is the strategic removal of forest fuels in linear firebreaks that segment forest landscapes into distinct compartments. However, limited human and financial resources can make it difficult to plan compartmentalization effectively. In this study, we developed a simulation-optimization approach to assist with the planning of wildfire risk mitigation efforts in the Red Rock-Prairie Creek area of Alberta…
Publication Type: Journal Article
Shaping Land Use Patterns in the Wildland-Urban Interface: The Role of State and Local Governments in Reducing Exposure to Wildfire Risks
Year: 2025
Development in the wildland-urban interface is increasing exposure to wildfire risks in the western United States. Yet, among the components of risk—hazard, vulnerability, and exposure—mitigating exposure has arguably been most difficult. In this report, we describe the set of interconnected state and local policies that affect development and risk exposure, including local land use planning and zoning, state policies governing insurance, building codes, and infrastructure spending, as well as the role of states as intermediaries between the federal government and localities. We discuss…
Publication Type: Report
Enhancing fire emissions inventories for acute health effects studies: integrating high spatial and temporal resolution data
Year: 2025
Background: Daily fire progression information is crucial for public health studies that examine the relationship between population-level smoke exposures and subsequent health events. Issues with remote sensing used in fire emissions inventories (FEI) lead to the possibility of missed exposures that impact the results of acute health effects studies.Aims: This paper provides a method for improving an FEI dataset with readily available information to create a more robust dataset with daily fire progression.Methods: High temporal and spatial resolution burned area information from two FEI…
Publication Type: Journal Article
Perspectives: Six opportunities to improve understanding of fuel treatment longevity in historically frequent-fire forests
Year: 2025
Fuel-reduction and restoration treatments (“treatments”) are conducted extensively in dry and historically frequent-fire forests of interior western North America (“dry forests”) to reduce potential for uncharacteristically severe wildfire. However, limited understanding of treatment longevity and long-term treatment effects creates potential for inefficient treatment maintenance and inaccurate forecasting of wildfire behavior. In this perspectives paper, we briefly summarize current understanding of long-term effects of three common treatment types (burn-only, thin-only, and thin-plus-burn)…
Publication Type: Journal Article
Enhancing fire emissions inventories for acute health effects studies: integrating high spatial and temporal resolution data
Year: 2025
Background: Daily fire progression information is crucial for public health studies that examine the relationship between population-level smoke exposures and subsequent health events. Issues with remote sensing used in fire emissions inventories (FEI) lead to the possibility of missed exposures that impact the results of acute health effects studies.Aims: This paper provides a method for improving an FEI dataset with readily available information to create a more robust dataset with daily fire progression.Methods: High temporal and spatial…
Publication Type: Journal Article
Insights Into Nature-Based Climate Solutions: Managing Forests for Climate Resilience and Carbon Stability
Year: 2025
Successful implementation of forest management as a nature-based climate solution is dependent on the durability of management-induced changes in forest carbon storage and sequestration. As forests face unprecedented stability risks in the face of ongoing climate change, much remains unknown regarding how management will impact forest stability, or how interactions with climate might shift the response of forests to management across spatiotemporal scales. Here, we used a process-based model to simulate multidecadal projections of forest dynamics in response to changes in management and…
Publication Type: Journal Article
Farming and ranching through wildfire: Producers’ critical role in fire risk management and emergency response
Year: 2025
Wildfires increasingly threaten California’s agricultural sector, posing serious risks to farming, ranching, and food systems. We conducted a survey of 505 California farmers and ranchers affected by wildfires between 2017 and 2023. Main findings show that wildfires’ impacts on producers are extensive and range from mild to catastrophic, with both short and long-term repercussions, regardless of their exposure level. Producers play a central role in community emergency wildfire risk response and management by reducing fuel loads, creating defensible space, and leveraging their fire management…
Publication Type: Journal Article
Comparing modeled soil temperature and moisture dynamics during prescribed fires, slash-pile burns and wildfires
Year: 2025
Background: Wildfires, prescribed fires and slash-pile burns are disturbances that occur in many terrestrial ecosystems. Such fires produce variable surface heat fluxes causing a spectrum of effects on soil, such as seed mortality, nutrient loss, changes in microbial activity and water repellency. Accurately modeling soil heating is vital to predicting these second-order fire effects. The process-based Massman HMV (Heat–Moisture–Vapor) model incorporates soil water evaporation, heat transport and water vapor movement, and captures the observed rapid evaporation of soil moisture. Aims:…
Publication Type: Journal Article
A Systematic Review of Trends and Methodologies in Research on the Effects of Wildfires on the Avifauna in Temperate Forests
Year: 2025
Perceptions of the relationships between forest ecosystems and wildfires have evolved. The ecological role of wildfires is now recognised as essential for maintaining the functionality of fire-adapted forests. Although research on the impact of fire on fauna has grown notably, there is a lack of consensus on its global effects due to the variable responses of faunal communities across taxa. This review provides a bibliometric synthesis of wildfires and their impact on avifauna in temperate forests. It identifies patterns and gaps in research methodologies and offers recommendations for future…
Publication Type: Journal Article
Modeling the probability of bark beetle-caused tree mortality as a function of watershed-scale host species presence and basal area
Year: 2025
In recent decades, bark beetle outbreaks have caused mass tree mortality in western US forests, which has led to altered wildfire characteristics, hydrological processes, and forest carbon dynamics. Understanding spatial variability in forest susceptibility to bark beetle outbreaks in the western US could inform strategic forest management to reduce wildfire risk, manage forest carbon, and plan for altered hydrology. The susceptibility of a forest stand to mortality by bark beetles depends on the availability and characteristics of trees of the host tree species. For multiple bark beetle…
Publication Type: Journal Article
Collapse and restoration of mature forest habitat in California
Year: 2025
Mature and old-growth forests provide critically important ecosystems services and wildlife habitats, but they are being lost at a rapid rate to uncharacteristic mega-disturbances. We developed a simulation system to project time-to-extinction for mature and old-growth forest habitat in the Sierra Nevada, California, USA. The simulation parameters were derived from a 1985–2022 empirical time-series of habitat for the southern Sierra Nevada fisher (Pekania pennanti), an endangered native mammal and old-forest obligate that has seen a 50 % decline in its habitat over the past…
Publication Type: Journal Article
Evaluating a simulation-based wildfire burn probability map for the conterminous US
Year: 2025
Background: Wildfire simulation models are used to derive maps of burn probability (BP) based on fuels, weather, topography and ignition locations, and BP maps are key components of wildfire risk assessments.Aims: Few studies have compared BP maps with real-world fires to evaluate their suitability for near-future risk assessment. Here, we evaluated a BP map for the conterminous US based on the large fire simulation model FSim.Methods: We compared BP with observed wildfires from 2016 to 2022 across 128 regions representing similar fire regimes (‘pyromes’). We…
Publication Type: Journal Article
Can ‘‘Fire Safe’’ Cigarettes (FSCs) Start Wildfires?
Year: 2025
Over the last 20 years, all states within the US have required all cigarettes sold to be ‘‘fire safe’’ or ‘‘fire standards compliant’’ meaning that they must pass ASTM standard E2187. Though these cigarettes are designed to self-extinguish, there have been recent studies suggesting that these ‘‘fire safe’’ cigarettes (FSCs) can still ignite mattresses and other furnishings, but there has been no guidance for fire investigators whether FSCs can ignite natural fuels, such as duff and needles, that can be the source of a wildland fire. This work sets out to investigate whether FSCs can indeed be…
Publication Type: Journal Article
Ecological scenarios: Embracing ecological uncertainty in an era of global change
Year: 2025
Scenarios, or plausible characterizations of the future, can help natural resource stewards plan and act under uncertainty. Current methods for developing scenarios for climate change adaptation planning are often focused on exploring uncertainties in future climate, but new approaches are needed to better represent uncertainties in ecological responses. Scenarios that characterize how ecological changes may unfold in response to climate and describe divergent and surprising ecological outcomes can help natural resource stewards recognize signs of nascent ecological transformation and…
Publication Type: Journal Article
The 2023 wildfires in British Columbia, Canada: impacts, drivers, and transformations to coexist with wildfire
Year: 2025
In 2023, all regions of British Columbia (BC) experienced record-breaking fire weather and wildfires, with extreme behavior and social-ecological effects. In total, 2245 wildfires burned 2840 545 hectares. Contemporary wildfires are the culmination of a century of altered human–forest–wildfire relationships, exacerbated by climate change. Transformative change is urgently needed for the ecosystems and communities to be resilient to wildfire. We present six interrelated strategies needed to amplify the pace and scale of change in response to recent wildfire extremes: (1) Immediately diversify…
Publication Type: Journal Article
Climate Change Contributions to US Wildfire Smoke PM2.5 Mortality Between 2006-2020
Year: 2025
RATIONALE Wildfires have increased in frequency and intensity due to climate change and now contribute to nearly half of the annual average of fine particulate matter in the US. While the effects of short-term wildfire-PM2.5 exposure on respiratory diseases are well-described, the impact of climate change on longer duration wildfire-PM2.5 mortality is unknown. Our aim was to determine the contribution of anthropogenic climate change to wildfire smoke PM2.5 mortality on a county-level across the conterminous US between 2006-2020. METHODS We use an attribution model to compare observed wildfire…
Publication Type: Journal Article
Wildland fire entrainment: The missing link between wildland fire and its environment
Year: 2025
Wildfires are growing in destructive power, and accurately predicting the spread and intensity of wildland fire is essential for managing ecological and societal impacts. No current operational models used for fire behavior prediction resolve critical fire-atmospheric coupling or nonlocal influences of the fire environment, rendering them inadequate in accounting for the range of wildland fire behavior scenarios under increasingly novel fuel and climate conditions. Here, we present a new perspective on a dominant fire-atmospheric feedback mechanism, which we term wildland fire entrainment (…
Publication Type: Journal Article