Research Database
Displaying 41 - 60 of 166
Acorn woodpecker movements and social networks change with wildfire smoke
Year: 2023
Climate change has contributed to increased wildfires. Wildfire smoke exposes wildlife to hazards and mortality from particulate matter on a scale larger than the area impacted by fire. Using automated radiotelemetry, we illustrate how smoky conditions are associated with changes in behavior of acorn woodpeckers (Melanerpes formicivorus), a…
Publication Type: Journal Article
Performance of Fire Danger Indices and Their Utility in Predicting Future Wildfire Danger Over the Conterminous United States
Year: 2023
Predicting current and future wildfire frequency and size is central to wildfire control and management. Multiple fire danger indices (FDIs) that incorporate weather and fuel conditions have been developed and utilized to support wildfire predictions and risk assessment. However, the scale-dependent performance of individual FDIs remains poorly understood, which leads to large uncertainty in the estimated fire sizes under climate change. Here, we calculate four commonly used FDIs over the conterminous United States using high-resolution (4 km) climate and fuel data sets for the 1984–2019…
Publication Type: Journal Article
Contrasting effects of urbanization and fire on understory plant communities in the natural and wildland–urban interface
Year: 2023
As human populations expand and land-use change intensifies, terrestrial ecosystems experience concurrent disturbances (e.g., urbanization and fire) that may interact and compound their effects on biodiversity. In the urbanizing landscapes of the southern Appalachian region of the United States of America (US), fires in mesic forests have become more frequent in recent years. However, 80 years of forest management practices aimed at fire suppression in this region may have decreased landscape resistance or resilience to high-severity fires. At the same time, housing development is rapidly…
Publication Type: Journal Article
DUET - Distribution of Understory using Elliptical Transport: A mechanistic model of leaf litter and herbaceous spatial distribution based on tree canopy structure
Year: 2023
Heterogeneity in surface fuels produced by overstory trees and understory vegetation is a major driver of fire behavior and ecosystem dynamics. Previous attempts at predicting tree leaf and needle litter accumulation over time have been constrained in scope to probabilistic models that consider a limited number of key factors influencing tree litter dispersal patterns and decomposition processes. We present a mechanistic model for estimating variation in surface fuels called the Distribution of Understory using Elliptical Transport (DUET). DUET uses a pre-generated voxelated canopy array and…
Publication Type: Journal Article
Atmospheric turbulence and wildland fires: a review
Year: 2023
The behaviour of wildland fires and the dispersion of smoke from those fires can be strongly influenced by atmospheric turbulent flow. The science to support that assertion has developed and evolved over the past 100+ years, with contributions from laboratory and field observations, as well as modelling experiments. This paper provides a synthesis of the key laboratory- and field-based observational studies focused on wildland fire and atmospheric turbulence connections that have been conducted from the early 1900s through 2021. Included in the synthesis are reports of anecdotal…
Publication Type: Journal Article
Using soil moisture information to better understand and predict wildfire danger: a review of recent developments and outstanding questions
Year: 2023
Soil moisture conditions are represented in fire danger rating systems mainly through simple drought indices based on meteorological variables, even though better sources of soil moisture information are increasingly available. This review summarises a growing body of evidence indicating that greater use of in situ, remotely sensed, and modelled soil moisture information in fire danger rating systems could lead to better estimates of dynamic live and dead herbaceous fuel loads, more accurate live and dead fuel moisture predictions, earlier warning of wildfire danger, and better forecasts of…
Publication Type: Journal Article
A roadmap for pyrodiversity science
Year: 2023
Background
Contemporary and projected shifts in global fire regimes highlight the importance of understanding how fire affects ecosystem function and biodiversity across taxa and geographies. Pyrodiversity, or heterogeneity in fire history, is often an important driver of biodiversity, though it has been largely overlooked until relatively recently. In this paper, we synthesise previous research to develop a theoretical framework on pyrodiversity–biodiversity relationships and propose future research and conservation management directions.
Theoretical Framework
Pyrodiversity may affect…
Publication Type: Journal Article
Modeling Wildland Firefighters’ Assessments of Structure Defensibility
Year: 2023
In wildland–urban interface areas, firefighters balance wildfire suppression and structure protection. These tasks are often performed under resource limitations, especially when many structures are at risk. To address this problem, wildland firefighters employ a process called “structure triage” to prioritize structure protection based on perceived defensibility. Using a dataset containing triage assessments of thousands of structures within the Western US, we developed a machine learning model that can improve the understanding of factors contributing to assessed structure defensibility.…
Publication Type: Journal Article
A comparison of smoke modelling tools used to mitigate air quality impacts from prescribed burning
Year: 2023
Background. Prescribed fire is a land management tool used extensively across the United States. Owing to health and safety risks, smoke emitted by burns requires appropriate manage- ment. Smoke modelling tools are often used to mitigate air pollution impacts. However, direct comparisons of tools’ predictions are lacking. Aims. We compared three tools commonly used to plan prescribed burning projects: the Simple Smoke Screening Tool, VSmoke and HYSPLIT. Methods. We used each tool to model smoke dispersion from prescribed burns conducted by the North Carolina Division of Parks and Recreation…
Publication Type: Journal Article
Incorporating pyrodiversity into wildlife habitat assessments for rapid post-fire management: A woodpecker case study
Year: 2023
Spatial and temporal variation in fire characteristics—termed pyrodiversity—areincreasingly recognized as important factors that structure wildlife communitiesin fire-prone ecosystems, yet there have been few attempts to incorporatepyrodiversity or post-fire habitat dynamics into predictive models of animaldistributionsandabundancetosupportpost-firemanagement.Weusetheblack-backed woodpecker—a species associated with burned forests—as a case study todemonstrate a pathway for incorporating pyrodiversity into wildlife habitatassessments for adaptive management. Employing monitoring data (2009–…
Publication Type: Journal Article
The eco-evolutionary role of fire in shaping terrestrial ecosystems
Year: 2023
1. Fire is an inherently evolutionary process, even though much more emphasis has been given to ecological responses of plants and their associated communities to fire. 2. Here, we synthesize contributions to a Special Feature entitled ‘Fire as a dynamic ecological and evolutionary force’ and place them in a broader context of fire research. Topics covered in this Special Feature include a perspective on the im-pacts of novel fire regimes on differential forest mortality, discussions on new ap-proaches to investigate vegetation-fire feedbacks and resulting plant syndromes,…
Publication Type: Journal Article
Optimizing the implementation of a forest fuel break network
Year: 2023
Methods and models to design, prioritize and evaluate fuel break networks have potential application in many fire-prone ecosystems where major increases in fuel management investments are planned in response to growing incidence of wildfires. A key question facing managers is how to scale treatments into manageable project areas that meet operational and administrative constraints, and then prioritize their implementation over time to maximize fire management outcomes. We developed and tested a spatial modeling system to optimize the implementation of a proposed 3,538 km fuel break network…
Economic Impacts of Fire, Fuels and Fuel Treatments, Risk Assessment and Analysis, Social and Community Impacts of Fire
Publication Type: Journal Article
Projecting live fuel moisture content via deep learning
Year: 2023
Background: Live fuel moisture content (LFMC) is a key environmental indicator used to monitor for high wildfire risk conditions. Many statistical models have been proposed to predict LFMC from remotely sensed data; however, almost all these estimate current LFMC (nowcasting models). Accurate modelling of LFMC in advance (projection models) would provide wildfire managers with more timely information for assessing and preparing for wildfire risk. Aims: The aim of this study was to investigate the potential for deep learning models to predict LFMC across the continental United States 3 months…
Publication Type: Journal Article
Making choices: prioritising the protection of biodiversity in wildfires
Year: 2023
Biodiversity is in chronic decline, and extreme events – such as wildfires – can add further episodes of acute losses. Fires of increasing magnitude will often overwhelm response capacity, and decision-makers need to make choices about what to protect. Conventionally, such choices prioritise human life then infrastructure then biodiversity. Based on shortcomings revealed in the 2019–20 Australian wildfires, we propose a series of linked steps that can be used to identify and prioritise biodiversity assets (including their priority relative to other types of assets), enhance and implement…
Publication Type: Journal Article
Avoided wildfire impact modeling with counterfactual probabilistic analysis
Year: 2023
Assessing the effectiveness and measuring the performance of fuel treatments and other wildfire risk mitigation efforts are challenging endeavors. Perhaps the most complicated is quantifying avoided impacts. In this study, we show how probabilistic counterfactual analysis can help with performance evaluation. We borrow insights from the disaster risk mitigation and climate event attribution literature to illustrate a counterfactual framework and provide examples using ensemble wildfire simulations. Specifically, we reanalyze previously published fire simulation data from fire-prone landscapes…
Publication Type: Journal Article
Comparing smoke emissions and impacts under alternative forest management regimes
Year: 2022
Smoke from wildfires has become a growing public health issue around the world but especially in western North America and California. At the same time, managers and scientists recommend thinning and intentional use of wildland fires to restore forest health and reduce smoke from poorly controlled wildfires. Because of the changing climate and management paradigms, the evaluation of smoke impacts needs to shift evaluations from the scale of individual fire events to long-term fire regimes and regional impacts under different management strategies. To confront this challenge, we integrated…
Publication Type: Journal Article
Multi-Objective Scheduling of Fuel Treatments to Implement a Linear Fuel Break Network
Year: 2022
We developed and applied a spatial optimization algorithm to prioritize forest and fuel management treatments within a proposed linear fuel break network on a 0.5 million ha Western US national forest. The large fuel break network, combined with the logistics of conducting forest and fuel management, requires that treatments be partitioned into a sequence of discrete projects, individually implemented over the next 10–20 years. The original plan for the network did not consider how linear segments would be packaged into projects and how projects would be prioritized for treatments over time,…
Publication Type: Journal Article
Incorporating place-based values into ecological restoration
Year: 2022
Knowledge of how ecocultural landscapes co-evolved, how they were shaped and maintained by local people, and what processes disturbed the landscape should inform the planning, execution, and significance of restoration projects. Indigenous stewardship has resulted in legacies of diverse and productive ecocultural environments. Often, this stewardship has been guided by place-based values, which are informed by Indigenous knowledge, beliefs of equal respect for all ecosystem components, and conduct that sustains resource productivity. We propose that cultivating place-based values in…
Publication Type: Journal Article
Evaluating Satellite Fire Detection Products and an Ensemble Approach for Estimating Burned Area in the United States
Year: 2022
Fire location and burning area are essential parameters for estimating fire emissions. However, ground-based fire data (such as fire perimeters from incident reports) are often not available with the timeliness required for real-time forecasting. Fire detection products derived from satellite instruments such as the GOES-16 Advanced Baseline Imager or MODIS, on the other hand, are available in near real-time. Using a ground fire dataset of 2699 fires during 2017–2019, we fit a series of linear models that use multiple satellite fire detection products (HMS aggregate fire product, GOES-16,…
Publication Type: Journal Article
The Construction of Probabilistic Wildfire Risk Estimates for Individual Real Estate Parcels for the Contiguous United States
Year: 2022
The methodology used by the First Street Foundation Wildfire Model (FSF-WFM) to compute estimates of the 30-year, climate-adjusted aggregate wildfire hazard for the contiguous United States at 30 m horizontal resolution is presented. The FSF-WFM integrates several existing methods from the wildfire science community and implements computationally efficient and scalable modeling techniques to allow for new high-resolution, CONUS-wide hazard generation. Burn probability, flame length, and ember spread for the years 2022 and 2052 are computed from two ten-year representative Monte Carlo…
Publication Type: Journal Article