Research Database
Displaying 341 - 360 of 373
The Importance of Framing for Communicating Risk and Managing Forest Health
Year: 2012
Despite the importance of effective communication about forest and fuel management, little is known about how best to frame information to facilitate public understanding and increase support. The results presented here indicate that framing a fuel management plan as necessary to restore "lost" forest health (as opposed to maintaining or improving forest health) will increase the willingness of individuals to support options that pose some likelihood of failure (i.e. risk). Strategic framing of communication for public audiences is necessary because of the common biases in judgment that can…
Publication Type: Journal Article
Comparative Hazard Assessment for Protected Species in a Fire-Prone Landscape
Year: 2012
We conducted a comparative hazard assessment for 325,000 ha in a fire-prone area of southwest Oregon, USA. The landscape contains a variety of land ownerships, fire regimes, and management strategies. Our comparative hazard assessment evaluated the effects of two management strategies on crown fire potential and northern spotted owl (Strix occidentalis caurina) conservation: (1) no action, and (2) active manipulation of hazardous fuels. Model simulations indicated that active management of sites with high fire hazard was more favorable to spotted owl conservation over the long term (75 years…
Publication Type: Journal Article
Eco-Evolutionary Responses of Biodiversity to Climate Change
Year: 2012
Climate change is predicted to alter global species diversity, the distribution of human pathogens and ecosystem services. Forecasting these changes and designing adequate management of future ecosystem services will require predictive models encompassing the most fundamental biotic responses. However, most present models omit important processes such as evolution and competition. Here we develop a spatially explicit eco-evolutionary model of multi-species responses to climate change. We demonstrate that both dispersal and evolution differentially mediate extinction risks and biodiversity…
Publication Type: Journal Article
Climate Change, Forests, Fire, Water, and Fish: Building Resilient Landscapes, Streams, and Managers
Year: 2012
Fire will play an important role in shaping forest and stream ecosystems as the climate changes. Historic observations show increased dryness accompanying more widespread fire and forest die-off. These events punctuate gradual changes to ecosystems and sometimes generate stepwise changes in ecosystems. Climate vulnerability assessments need to account for fire in their calculus. The biophysical template of forest and stream ecosystems determines much of their response to fire. This report describes the framework of how fire and climate change work together to affect forest and fish…
Publication Type: Report
Scenarios of land use and land cover change in the conterminous United States: Utilizing the special report on emission scenarios at ecoregional scales
Year: 2012
Global environmental change scenarios have typically provided projections of land use and land cover for a relatively small number of regions or using a relatively coarse resolution spatial grid, and for only a few major sectors. The coarseness of global projections, in both spatial and thematic dimensions, often limits their direct utility at scales useful for environmental management. This paper describes methods to downscale projections of land-use and land-cover change from the Intergovernmental Panel on Climate Change's Special Report on Emission Scenarios to ecological regions of the…
Publication Type: Journal Article
Pattern and process of prescribed fires influence effectiveness at reducing wildfire severity in dry coniferous forests
Year: 2012
We examined the effects of three early season (spring) prescribed fires on burn severity patterns of summer wildfires that occurred 1–3 years post- treatment in a mixed conifer forest in central Idaho. Wildfire and prescribed fire burn severities were estimated as the difference in normalized burn ratio (dNBR) using Landsat imagery. We used GIS derived vegetation, topography, and treatment variables to generate models predicting the wildfire burn severity of 1286–5500 30- m pixels within and around treated areas. We found that wildfire severity was significantly lower in treated areas than in…
Publication Type: Journal Article
Afternoon Rain More Likely Over Drier Soils
Year: 2012
Land surface properties, such as vegetation cover and soil moisture, influence the partitioning of radiative energy between latent and sensible heat fluxes in daytime hours. During dry periods, soil-water deficit can limit evapotranspiration, leading to warmer and drier conditions in the lower atmosphere. Soil moisture can influence the development of convective storms through such modifications of low-level atmospheric temperature and humidity, which in turn feeds back on soil moisture. Yet there is considerable uncertainty in how soil moisture affects convective storms across the world,…
Publication Type: Journal Article
Estimating Consumption and Remaining Carbon in Burned Slash Piles
Year: 2012
Fuel reduction treatments to reduce fire risk have become commonplace in the fire adapted forests of western North America. These treatments generate significant woody debris, or slash, and burning this material in piles is a common and inexpensive approach to reducing fuel loads. Although slash pile burning is a common practice, there is little information on consumption or even a common methodology for estimating consumption. As considerations of carbon storage and emissions from forests increase, better means of quantifying burn piles are necessary. This study uses two methods, sector…
Publication Type: Journal Article
Fuels and Fire Behavior Dynamics in Bark Beetle-Attacked Forests in Western North America and Implications for Fire Management
Year: 2012
Declining forest health attributed to associations between extensive bark beetle-caused tree mortality, accumulations of hazardous fuels, wildfire, and climate change have catalyzed changes in forest health and wildfire protection policies of land management agencies. These changes subsequently prompted research to investigate the extent to which bark beetle-altered fuel complexes affect fire behavior. Although not yet rigorously quantified, the results of the investigations, in addition to a growing body of operational experience and research, indicates that predictable changes in surface,…
Publication Type: Journal Article
Evaluating Soil Risks Associated With Severe Wildfire and Ground-Based Logging
Year: 2011
Rehabilitation and timber-salvage activities after wildfire require rapid planning and rational decisions. Identifying areas with high risk for erosion and soil productivity losses is important. Moreover, allocation of corrective and mitigative efforts must be rational and prioritized. Our logic-based analysis of forested soil polygons on the Okanogan-Wenatchee National Forest was designed and implemented with the Ecosystem Management Decision Support (EMDS) system to evaluate risks to soil properties and productivity associated with moderate to severe wildfire and unmitigated use of ground-…
Publication Type: Report
Advancing effects analysis for integrated, large-scale wildfire risk assessment
Year: 2011
In this article, we describe the design and development of a quantitative, geospatial risk assessment tool intended to facilitate monitoring trends in wildfire risk over time and to provide information useful in prioritizing fuels treatments and mitigation measures. The research effort is designed to develop, from a strategic view, a first approximation of how both fire likelihood and intensity influence risk to social, economic, and ecological values at regional and national scales. Three main components are required to generate wildfire risk outputs: (1) burn probability maps generated from…
Publication Type: Journal Article
Short- and Long-term Effects of Fire on Carbon in US Dry Temperate Forest Systems
Year: 2011
Forests sequester carbon from the atmosphere, and in so doing can mitigate the effects of climate change. Fire is a natural disturbance process in many forest systems that releases carbon back to the atmosphere. In dry temperate forests, fires historically burned with greater frequency and lower severity than they do today. Frequent fires consumed fuels on the forest floor and maintained open stand structures. Fire suppression has resulted in increased understory fuel loads and tree density; a change in structure that has caused a shift from low- to high-severity fires. More severe fires,…
Publication Type: Journal Article
Simulating fuel treatment effects in dry forests of the western United States: testing the principles of a fire-safe forest
Year: 2011
We used the Fire and Fuels Extension to the Forest Vegetation Simulator (FFE-FVS) to simulate fuel treatment effects on 45 1 62 stands in low- to midelevation dry forests (e.g., ponderosa pine (Pinus ponderosa Doug!. ex. P. & C. Laws.) and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) of the western United States. We evaluated treatment effects on predicted post-treatment fire behavior (fire type) and fire hazard (torching index). FFE-FVS predicts that thinning and surface fuel treatments reduced crown fire behavior relative to no treatment; a large proportion of stands were…
Publication Type: Journal Article
Northwest Forest Plan -- The First 15 Years: Status and Trends of Northern Spotted Owl Populations and Habitats
Year: 2011
This is the second in a series of periodic monitoring reports on northern spotted owl (Strix occidentalis caurina) population and habitat trends on federally administered lands since implementation of the Northwest Forest Plan in 1994.Here we summarize results from a population analysis that included data from long-term demographic studies during 1985–2008. This data was analyzed separately by study area, and also in a meta-analysis across all study areas to assess temporal and spatial patterns in fecundity, apparent survival, recruitment, and annual rates of population change. Estimated…
Publication Type: Report
Wildfire Risk Management on a Landscape with Public and Private Ownership: Who Pays for Protection?
Year: 2010
Wildfire, like many natural hazards, affects large landscapes with many landowners and the risk individual owners face depends on both individual and collective protective actions. In this study, we develop a spatially explicit game theoretic model to examine the strategic interaction between landowners’ hazard mitigation decisions on a landscape with public and private ownership. We find that in areas where ownership is mixed, the private landowner performs too little fuel treatment as they ‘‘free ride’’—capture benefits without incurring the costs—on public protection, while areas with…
Publication Type: Journal Article
Introducing FuelCalc: A New Tool that Helps Turn Static Inventory Data into Actionable Information
Year: 2010
Fuel and fire managers perform fuel treatments to manage and restore ecosystems and protect resources. In order to plan effective fuel treatments that accomplish objectives, managers need to analyze fuel conditions and document the expected fire behavior and fire effects both before and after fuel treatment. To help accomplish these goals, a new software tool named FuelCalc was created. FuelCalc facilitates use of a wide range of inventory data and fuel characteristics to help calculate fuel quantities and qualities to estimate potential fire behavior, fire effects, and smoke production. By…
Publication Type: Report
Estimating volume, biomass, and potential emissions of hand-piled fuels
Year: 2009
Dimensions, volume, and biomass were measured for 121 hand-constructed piles composed primarily of coniferous (n = 63) and shrub/hardwood (n = 58) material at sites in Washington and California. Equations using pile dimensions, shape, and type allow users to accurately estimate the biomass of hand piles. Equations for estimating true pile volume from simple geometric shapes and measurements of pile dimensions were also developed for users who require estimates of pile volume for regulatory reporting. Biomass and volume estimation equations were developed to allow users to estimate either…
Publication Type: Report
The evaluation of meta-analysis techniques for quantifying prescribed fire effects on fuel loadings
Year: 2009
Models and effect-size metrics for meta-analysis were compared in four separate meta-analyses quantifying surface fuels after prescribed fires in ponderosa pine (Pinus ponderosa Dougl. ex Laws.) forests of the Western United States. An aggregated data set was compiled from 8 published reports that contained data from 65 fire treatment units. Downed woody and organic fuels were partitioned into five classes, and four meta-analyses were performed on each in a 2 by 2 factorial combination of fixed-effects vs. mixed-effects models with a difference-based metric (Hedges’ d) vs. a ratio-based…
Publication Type: Report
FOFEM: The First-Order Fire Effects Model Adapts to the 21st Century
Year: 2009
Technology is playing an increasingly pivotal role in the efficiency and effectiveness of fire management. The First Order Fire Effects Model (FOFEM) is a widely used computer application that predicts the immediate or ‘first-order’ effects of fire: fuel consumption, tree mortality, emissions, and soil heating. FOFEM’s simple operation and comprehensive features have made it a workhorse for fire and resource professionals who need to be able to predict, assess and plan for fire’s effects. Over the last decade FOFEM has undergone several upgrades as developers continue to improve function and…
Publication Type: Report
Response of antelope bitterbrush to repeated prescribed burning in Central Oregon ponderosa pine forests
Year: 2009
Antelope bitterbrush is a dominant shrub in many interior ponderosa pine forests in the western United States. How it responds to prescribed fire is not well understood, yet is of considerable concern to wildlife and fire managers alike given its importance as a browse species and as a ladder fuel in these fire-prone forests. We quantified bitterbrush cover, density, and biomass in response to repeated burning in thinned ponderosa pine forests. Low- to moderate-intensity spring burning killed the majority of bitterbrush plants on replicate plots. Moderately rapid recovery of bitterbrush…
Publication Type: Journal Article