Research Database
Displaying 61 - 80 of 207
Incorporating pyrodiversity into wildlife habitat assessments for rapid post-fire management: A woodpecker case study
Year: 2023
Spatial and temporal variation in fire characteristics—termed pyrodiversity—areincreasingly recognized as important factors that structure wildlife communitiesin fire-prone ecosystems, yet there have been few attempts to incorporatepyrodiversity or post-fire habitat dynamics into predictive models of animaldistributionsandabundancetosupportpost-firemanagement.Weusetheblack-backed woodpecker—a species associated with burned forests—as a case study todemonstrate a pathway for incorporating pyrodiversity into wildlife habitatassessments for adaptive management. Employing monitoring data (2009–…
Publication Type: Journal Article
Optimizing the implementation of a forest fuel break network
Year: 2023
Methods and models to design, prioritize and evaluate fuel break networks have potential application in many fire-prone ecosystems where major increases in fuel management investments are planned in response to growing incidence of wildfires. A key question facing managers is how to scale treatments into manageable project areas that meet operational and administrative constraints, and then prioritize their implementation over time to maximize fire management outcomes. We developed and tested a spatial modeling system to optimize the implementation of a proposed 3,538 km fuel break network…
Economic Impacts of Fire, Fuels and Fuel Treatments, Risk Assessment and Analysis, Social and Community Impacts of Fire
Publication Type: Journal Article
Using soil moisture information to better understand and predict wildfire danger: a review of recent developments and outstanding questions
Year: 2023
Soil moisture conditions are represented in fire danger rating systems mainly through simple drought indices based on meteorological variables, even though better sources of soil moisture information are increasingly available. This review summarises a growing body of evidence indicating that greater use of in situ, remotely sensed, and modelled soil moisture information in fire danger rating systems could lead to better estimates of dynamic live and dead herbaceous fuel loads, more accurate live and dead fuel moisture predictions, earlier warning of wildfire danger, and better forecasts of…
Publication Type: Journal Article
Projecting live fuel moisture content via deep learning
Year: 2023
Background: Live fuel moisture content (LFMC) is a key environmental indicator used to monitor for high wildfire risk conditions. Many statistical models have been proposed to predict LFMC from remotely sensed data; however, almost all these estimate current LFMC (nowcasting models). Accurate modelling of LFMC in advance (projection models) would provide wildfire managers with more timely information for assessing and preparing for wildfire risk. Aims: The aim of this study was to investigate the potential for deep learning models to predict LFMC across the continental United States 3 months…
Publication Type: Journal Article
Fuel Profiles and Biomass Carbon Following Bark Beetle Outbreaks: Insights for Disturbance Interactions from a Historical Silvicultural Experiment
Year: 2023
Anticipating consequences of disturbance interactions on ecosystem structure and function is a critical management priority as disturbance activity increases with warming climate. Across the Northern Hemisphere, extensive tree mortality from recent bark beetle outbreaks raises concerns about potential fire behavior and post-fire forest function. Silvicultural treatments (that is, partial or complete cutting of forest stands) may reduce outbreak severity and subsequent fuel loads, but longevity of pre-outbreak treatment effects on outbreak severity and post-outbreak fuel profiles remains…
Publication Type: Journal Article
Avoided wildfire impact modeling with counterfactual probabilistic analysis
Year: 2023
Assessing the effectiveness and measuring the performance of fuel treatments and other wildfire risk mitigation efforts are challenging endeavors. Perhaps the most complicated is quantifying avoided impacts. In this study, we show how probabilistic counterfactual analysis can help with performance evaluation. We borrow insights from the disaster risk mitigation and climate event attribution literature to illustrate a counterfactual framework and provide examples using ensemble wildfire simulations. Specifically, we reanalyze previously published fire simulation data from fire-prone landscapes…
Publication Type: Journal Article
The century-long shadow of fire exclusion: Historical data reveal early and lasting effects of fire regime change on contemporary forest composition
Year: 2023
Historical logging practices and fire exclusion have reduced the proportion of pine in mixed-conifer forests of the western United States. To better understand pine’s decline, we investigate the impact of historical logging on the tree regeneration layer and subsequent stand development over almost a century of fire exclusion. We use a unique dataset derived from contemporary (∼2016) remeasurement of 440 historical quadrats (∼4m2) in the central Sierra Nevada, California, in which overstory trees, tree regeneration, and microsite conditions were measured and mapped both before and after…
Publication Type: Journal Article
An aridity threshold model of fire sizes and annual area burned in extensively forested ecoregions of the western USA
Year: 2023
Wildfire occurrence varies among regions and through time due to the long-term impacts of climate on fuel structure and short-term impacts on fuel flammability. Identifying the climatic conditions that trigger extensive fire years at regional scales can enable development of area burned models that are both spatially and temporally robust, which is crucial for understanding the impacts of past and future climate change. We identified region-specific thresholds in fire-season aridity that distinguish years with limited, moderate, and extensive area burned for 11 extensively forested ecoregions…
Publication Type: Journal Article
Long-term mortality burden trends attributed to black carbon and PM2·5 from wildfire emissions across the continental USA from 2000 to 2020: a deep learning modelling study
Year: 2023
Background
Long-term improvements in air quality and public health in the continental USA were disrupted over the past decade by increased fire emissions that potentially offset the decrease in anthropogenic emissions. This study aims to estimate trends in black carbon and PM2·5 concentrations and their attributable mortality burden across the USA.
Methods
In this study, we derived daily concentrations of PM2·5 and its highly toxic black carbon component at a 1-km resolution in the USA from 2000 to 2020 via deep learning that integrated big data from satellites, models, and surface…
Publication Type: Journal Article
High-severity fire drives persistent floristic homogenization in human-altered forests
Year: 2023
Ecological disturbance regimes across the globe are being altered via direct and indirect human influences. Biodiversity loss at multiple scales can be a direct outcome of these shifts. Fire, especially in dry forests, is an ecological disturbance that is experiencing dramatic changes due to climate change, fire suppression, increased human population in fire-prone areas, and alterations to vegetation composition and structure. Dry western conifer forests that historically experienced frequent, low-severity fires are now increasingly burning at high severity. Relatively little work has been…
Publication Type: Journal Article
Exploring and Testing Wildfire Risk Decision-Making in the Face of Deep Uncertainty
Year: 2023
We integrated a mechanistic wildfire simulation system with an agent-based landscape change model to investigate the feedbacks among climate change, population growth, development, landowner decision-making, vegetative succession, and wildfire. Our goal was to develop an adaptable simulation platform for anticipating risk-mitigation tradeoffs in a fire-prone wildland–urban interface (WUI) facing conditions outside the bounds of experience. We describe how five social and ecological system (SES) submodels interact over time and space to generate highly variable alternative futures even within…
Publication Type: Journal Article
Multi-Objective Scheduling of Fuel Treatments to Implement a Linear Fuel Break Network
Year: 2022
We developed and applied a spatial optimization algorithm to prioritize forest and fuel management treatments within a proposed linear fuel break network on a 0.5 million ha Western US national forest. The large fuel break network, combined with the logistics of conducting forest and fuel management, requires that treatments be partitioned into a sequence of discrete projects, individually implemented over the next 10–20 years. The original plan for the network did not consider how linear segments would be packaged into projects and how projects would be prioritized for treatments over time,…
Publication Type: Journal Article
Frequency of disturbance mitigates high-severity fire in the Lake Tahoe Basin, California and Nevada
Year: 2022
Because of past land use changes and changing climate, forests are moving outside of their historical range of variation. As fires become more severe, forest managers are searching for strategies that can restore forest health and reduce fire risk. However, management activities are only one part of a suite of disturbance vectors that shape forest conditions. To account for the range of disturbance intensities and disturbance types (wildfire, bark beetles, and management), we developed a disturbance return interval (DRI) that represents the average return period for any disturbance, human or…
Publication Type: Journal Article
The complexity of biological disturbance agents, fuels heterogeneity, and fire in coniferous forests of the western United States
Year: 2022
Forest biological disturbance agents (BDAs) are insects, pathogens, and parasitic plants that affect tree decline, mortality, and forest ecosystems processes. BDAs are commonly thought to increase the likelihood and severity of fire by converting live standing trees to more flammable, dead and downed fuel. However, recent research indicates that BDAs do not necessarily increase, and can reduce, the likelihood or severity of fire. This has led to confusion regarding the role of BDAs in influencing fuels and fire in fire-prone western United States forests. Here, we review the existing…
Publication Type: Journal Article
Comparing smoke emissions and impacts under alternative forest management regimes
Year: 2022
Smoke from wildfires has become a growing public health issue around the world but especially in western North America and California. At the same time, managers and scientists recommend thinning and intentional use of wildland fires to restore forest health and reduce smoke from poorly controlled wildfires. Because of the changing climate and management paradigms, the evaluation of smoke impacts needs to shift evaluations from the scale of individual fire events to long-term fire regimes and regional impacts under different management strategies. To confront this challenge, we integrated…
Publication Type: Journal Article
Evaluating Satellite Fire Detection Products and an Ensemble Approach for Estimating Burned Area in the United States
Year: 2022
Fire location and burning area are essential parameters for estimating fire emissions. However, ground-based fire data (such as fire perimeters from incident reports) are often not available with the timeliness required for real-time forecasting. Fire detection products derived from satellite instruments such as the GOES-16 Advanced Baseline Imager or MODIS, on the other hand, are available in near real-time. Using a ground fire dataset of 2699 fires during 2017–2019, we fit a series of linear models that use multiple satellite fire detection products (HMS aggregate fire product, GOES-16,…
Publication Type: Journal Article
Future climate risks from stress, insects and fire across US forests
Year: 2022
Forests are currently a substantial carbon sink globally. Many climate change mitigation strategies leverage forest preservation and expansion, but rely on forests storing carbon for decades to centuries. Yet climate-driven disturbances pose critical risks to the long-term stability of forest carbon. We quantify the climate drivers that influence wildfire and climate stress-driven tree mortality, including a separate insect-driven tree mortality, for the contiguous United States for current (1984–2018) and project these future disturbance risks over the 21st century. We find that current…
Publication Type: Journal Article
The Construction of Probabilistic Wildfire Risk Estimates for Individual Real Estate Parcels for the Contiguous United States
Year: 2022
The methodology used by the First Street Foundation Wildfire Model (FSF-WFM) to compute estimates of the 30-year, climate-adjusted aggregate wildfire hazard for the contiguous United States at 30 m horizontal resolution is presented. The FSF-WFM integrates several existing methods from the wildfire science community and implements computationally efficient and scalable modeling techniques to allow for new high-resolution, CONUS-wide hazard generation. Burn probability, flame length, and ember spread for the years 2022 and 2052 are computed from two ten-year representative Monte Carlo…
Publication Type: Journal Article
Modern Pyromes: Biogeographical Patterns of Fire Characteristics across the Contiguous United States
Year: 2022
In recent decades, wildfires in many areas of the United States (U.S.) have become larger and more frequent with increasing anthropogenic pressure, including interactions between climate, land-use change, and human ignitions. We aimed to characterize the spatiotemporal patterns of contemporary fire characteristics across the contiguous United States (CONUS). We derived fire variables based on frequency, fire radiative power (FRP), event size, burned area, and season length from satellite-derived fire products and a government records database on a 50 km grid (1984–2020). We used k-means…
Publication Type: Journal Article
Designing forest restoration projects to optimize the application of broadcast burning
Year: 2022
Active forest restoration programs on western US national forests face multiple challenges to meet their broad ecological goals while designing projects that generate sufficient revenue to build and maintain private forest management capacity needed to expand the scale and scope of treatments. We explored ways to design projects where admixing of treatments along gradients of dry and moist mixed conifer forest types could maximize financial viability while including substantial area where broadcast burning could be applied in conjunction with other treatments. In general, we found that…
Publication Type: Journal Article
Pagination
- First page
- Previous page
- …
- 2
- 3
- 4
- 5
- 6
- …
- Next page
- Last page