Research Database
Displaying 21 - 40 of 81
Relational risk assessment and management: investigating capacity in wildfire response networks
Year: 2017
Failures in effective communication and coordination within the network of responding organizations and agencies during a wildfire can lead to problematic or dangerous outcomes. Although risk assessment and management concepts are usually understood with regards to biophysical attributes in the wildfire context, these concepts can be extended to understanding risk for problematic communication and coordination embedded within social and organizational relationships. In this research, we propose leveraging existing network and social coordination theory to investigate how pre-fire…
Publication Type: Report
The Science of Fuel Treatments
Year: 2017
High fuel loads can significantly contribute to the intensity and severity of fires. Fuels include plant material, such as leaves, bark, needles, branches, and vegetation. Land managers use various methods to reduce fuel levels. The two most common fuel treatment methods include forest thinning and prescribed fire. The pace of implementing such fuel treatments has increased over the last several decades. Scientific studies of fuel treatments supported by the Joint Fire Science Program (JFSP) highlight significant findings on the effectiveness of these treatments in various fuel types.
Publication Type: Report
Policy Scenarios for fire-adapted communities: Understanding stakeholder risk-perceptions, using Fuzzy Cognitive Maps
Year: 2017
Collaborative groups are most effective when the varied stakeholder groups within them understand the risks of wildfire and take proactive steps to manage these risks. Implementing policies for fire risk mitigation and adaptation, however, remains difficult because risks and policy alternatives are not understood or supported uniformly across diverse stakeholders. To facilitate greater understanding and collaboration across diverse groups, we developed a novel approach, based on Fuzzy Cognitive Maps (FCM), in which we systematically collected mental model representations from a range of…
Publication Type: Report
Emissions from prescribed burning of timber slash piles in Oregon
Year: 2017
Emissions from burning piles of post-harvest timber slash (Douglas-fir) in Grande Ronde, Oregon were sampled using an instrument platform lofted into the plume using a tether-controlled aerostat or balloon. Emissions of carbon monoxide, carbon dioxide, methane, particulate matter (PM2.5), black carbon, ultraviolet absorbing PM, elemental/organic carbon, filter-based metals, polycyclic aromatic hydrocarbons (PAHs), polychlorinated dibenzodioxins/dibenzofurans (PCDD/PCDF), and volatile organic compounds (VOCs) were sampled to determine emission factors, the amount of pollutant formed per amount…
Publication Type: Journal Article
Fire Science Exchange Network
Year: 2017
The Joint Fire Science Program (JFSP) Fire Science Exchange Network is a national collaboration of 15 regional fire science exchanges that provides the most relevant, current wildland fire science information to federal, state, local, tribal, and private stakeholders within ecologically similar regions. The network brings fire managers, practitioners, and scientists together to address regional fire management needs and challenges.
Publication Type: Report
Joint Fire Science Program Smoke Science Plan Conclusion: Smoke Science Accomplishments Under the Plan
Year: 2017
The Smoke Science Plan (SSP) was the guidance and organizational tool of the Joint Fire Science Program for smoke research from 2011 until 2016. It helped to guide the funding and management of 41 research and development projects under four thematic areas. Since its inception in 2011, 29 smoke science projects have been funded. An additional 12 legacy projects, addressing research needs identified in the SSP, were added to the portfolio for a total of 41 projects considered as part of the SSP.
Publication Type: Report
Bridging the gap: Joint Fire Science Program Outcomes
Year: 2017
The Joint Fire Science Program (JFSP) has funded an impressive number of research projects over the years. However, the number of projects does not necessarily provide an accurate picture of the program’s effectiveness. Over the last decade, researchers have collected data and conducted several studies to determine whether the results of JFSP-funded projects are reaching potential users and informing management decisions and actions. Those studies have helped identify issues and influence changes within the program. Early studies pointed out the need for a boundary-spanning organization to…
Publication Type: Report
Polishing the Prism: Improving Wildfire Mitigation Planning by Coupling Landscape and Social Dimensions
Year: 2016
Effectively addressing wildfire risk to communities on large multi-owner landscapes requires an understanding of the biophysical factors that influence risk, such as fuel loads, topography, and weather, and social factors such as the capacity and willingness for communities to engage in fire-mitigation activities. Biophysical and social processes often are disconnected in wildfire mitigation planning frameworks because of mismatches in scale. The different spatial and temporal scales of these processes usually are not recognized in the planning process. Forest Service scientists Alan Ager,…
Publication Type: Report
Restoring forest structure and process stabilizes forest carbon in wildfire-prone southwestern ponderosa pine forests
Year: 2016
Changing climate and a legacy of fire-exclusion have increased the probability of high-severity wildfire, leading to an increased risk of forest carbon loss in ponderosa pine forests in the southwestern USA. Efforts to reduce high-severity fire risk through forest thinning and prescribed burning require both the removal and emission of carbon from these forests, and any potential carbon benefits from treatment may depend on the occurrence of wildfire. We sought to determine how forest treatments alter the effects of stochastic wildfire events on the forest carbon balance. We modeled three…
Publication Type: Journal Article
Scanning the Future of Wildfire: Resilience Ahead...Whether We Like It or Not?
Year: 2016
The field of so-called “futures research” provides researchers and stakeholders in a given subject area or system a way to map out and plan for alternate possible scenarios of the future. A recent research project supported by the Joint Fire Science Program brought together futures researchers and wildfire specialists to envision what the future holds for wildfire impacts and how the wildfire community may respond to the complex suite of emerging challenges. The consensus of the project’s foresight panel suggests that an era of resilience is ahead: but that this resilience may come either…
Publication Type: Report
Drivers of Wildfire Suppression Costs: A Review
Year: 2016
As federal spending on wildland fire suppression has increased dramatically in recent decades, significant policymaking has been designed, at least in part, to address and temper rising costs. Effective strategies for controlling public spending and leveraging limited wildfire management resources depend on a comprehensive understanding of the drivers of suppression costs. Problematically, frequently noted drivers often do not explain variability between similar wildfires or comparable wildfire seasons. As speculation and scrutiny around rising costs have increased, so too have scholarly…
Publication Type: Report
Burning the legacy? Influence of wildfire reburn on dead wood dynamics in a temperate conifer forest
Year: 2016
Dynamics of dead wood, a key component of forest structure, are not well described for mixed- severity fi re regimes with widely varying fi re intervals. A prominent form of such variation is when two stand- replacing fi res occur in rapid succession, commonly termed an early- seral “reburn.” These events are thought to strongly infl uence dead wood abundance in a regenerating forest, but this hypothesis has scarcely been tested. We measured dead wood following two overlapping wildfi res in coniferdominated forests of the Klamath Mountains, Oregon (USA), to assess whether reburning (15- yr…
Publication Type: Journal Article
Secretarial Order 3336 Science Priorities: The Role of Science Past, Present, and Future
Year: 2016
Within sagebrush (Artemisia spp.) ecosystems, which are home to more than 350 species of plants and animals, potentially more frequent and severe fires are causing an increased threat to human safety, property, rural economies, and wildlife habitat. In particular, the habitat of the greater sage-grouse (Centrocercus urophasianus), an iconic sagebrush-dependent species, is at risk. In response to this reality, on January 15, 2015, Secretary Sally Jewell signed Secretarial Order 3336 (S.O. 3336), titled “Rangeland Fire Prevention, Management, and Restoration.” The main purpose of the order is…
Publication Type: Report
Forest management scenarios in a changing climate: trade-offs between carbon, timber, and old forest
Year: 2016
Balancing economic, ecological, and social values has long been a challenge in the forests of the Pacific Northwest, where conflict over timber harvest and old-growth habitat on public lands has been contentious for the past several decades. The Northwest Forest Plan, adopted two decades ago to guide management on federal lands, is currently being revised as the region searches for a balance between sustainable timber yields and habitat for sensitive species. In addition, climate change imposes a high degree of uncertainty on future forest productivity, sustainability of timber harvest,…
Publication Type: Journal Article
Fire, Fuels, and Streams: The Effects and Effectiveness of Riparian Treatments
Year: 2015
Fire is an important disturbance in riparian systems—consuming vegetation; increasing light;creating snags and debris flows; altering habitat structure; and affecting stream conditions, erosion, andhydrology. For many years, land managers have worked to keep fire out of riparian systems through theuse of buffers. A number of projects funded by the Joint Fire Science Program are shedding light onthe dynamics of fire in riparian systems. Recent research and field practice have shown that (1) ripariantreatments can be beneficial and are not as risky as previously thought; and (2) riparian…
Publication Type: Report
Effects of harvest, fire, and pest/pathogen disturbances on the West Cascades ecoregion carbon balance
Year: 2015
Disturbance is a key influence on forest carbon dynamics, but the complexity of spatial and temporal patterns in forest disturbance makes it difficult to quantify their impacts on carbon flux over broad spatial domains.Here we used a time series of Landsat remote sensing images and a climate-driven carbon cycle process model to evaluate carbon fluxes at the ecoregion scale in western Oregon.
Publication Type: Journal Article
Traditional Ecological Knowledge: A Model for Modern Fire Management?
Year: 2014
For many thousands of years, aboriginal peoples worldwide used fire to manage landscapes. In NorthAmerica, the frequency and extent of fire (both human caused and natural) were much reduced afterEuropean colonization. Fire exclusion became the policy in the United States for most of the 20thcentury as the country became more settled and industrialized. Past fire exclusion has helped producelandscapes that are highly susceptible to uncharacteristically severe wildfire. An urgent challengefor land managers today is to reduce fire risk through several means, including prescribed burning,without…
Publication Type: Report
Wildland fire emissions, carbon, and climate: Modeling fuel consumption
Year: 2014
Fuel consumption specifies the amount of vegetative biomass consumed during wildland fire. It is a two-stage process of pyrolysis and combustion that occurs simultaneously and at different rates depending on the characteristics and condition of the fuel, weather, topography, and in the case of prescribed fire, ignition rate and pattern. Fuel consumption is the basic process that leads to heat absorbing emissions called greenhouse gas and other aerosol emissions that can impact atmospheric and ecosystem processes, carbon stocks, and land surface reflectance. It is a critical requirement for…
Publication Type: Journal Article
Building trust, establishing credibility, and communicating fire issues with the public
Year: 2014
With more people than ever living in the vicinity of the wildland-urban interface, communicating wildland fire management activities and building trust with the public is paramount for safety. Although the time and resources it takes to build and maintain the public’s trust may seem daunting, it may be one of the most important factors determining the long-term viability of a fire management program. Trust is built over time through personal relationships with citizens and communities and also by demonstrating competence and establishing credibility. When trust and confidence have been…
Publication Type: Report
Trust: A planning guide for wildfire agencies & practitioners
Year: 2014
This planning guide is the outcome of an international collaboration of researchers and practitioners/field managers working in communities at risk of wildfire in three countries. Initially, the team of social scientists from Australia, Canada, and the United States utilized the collective research literature to examine factors that influence stakeholder trust. A working draft of this document was shared with experienced agency personnel and community leaders previous to interactive workshops and field visits in each country. This allowed for deliberations of the essential features of…
Publication Type: Report