Research Database
Displaying 1 - 16 of 16
Wildland fire emissions, carbon, and climate: Modeling fuel consumption
Year: 2014
Fuel consumption specifies the amount of vegetative biomass consumed during wildland fire. It is a two-stage process of pyrolysis and combustion that occurs simultaneously and at different rates depending on the characteristics and condition of the fuel, weather, topography, and in the case of prescribed fire, ignition rate and pattern. Fuel consumption is the basic process that leads to heat absorbing emissions called greenhouse gas and other aerosol emissions that can impact atmospheric and ecosystem processes, carbon stocks, and land surface reflectance. It is a critical requirement for…
Publication Type: Journal Article
Mapping the daily progression of large wildland fires using MODIS active fire data
Year: 2014
High temporal resolution information on burnt area is needed to improve fire behaviour and emissions models. We used the Moderate Resolution Imaging Spectroradiometer (MODIS) thermal anomaly and active fire product (MO(Y)D14) as input to a kriging interpolation to derive continuous maps of the timing of burnt area for 16 large wildland fires. For each fire, parameters for the kriging model were defined using variogram analysis. The optimal number of observations used to estimate a pixel’s time of burning varied between four and six among the fires studied. The median standard error from…
Publication Type: Journal Article
Climate and very large wildland fires in the contiguous western USA
Year: 2014
Very large wildfires can cause significant economic and environmental damage, including destruction of homes, adverse air quality, firefighting costs and even loss of life. We examine how climate is associated with very large wildland fires (VLWFs ≥50 000 acres, or ~20 234 ha) in the western contiguous USA. We used composite records of climate and fire to investigate the spatial and temporal variability of VLWF–climatic relationships. Results showed quantifiable fire weather leading up and up to 3 weeks post VLWF discovery, thus providing predictors of the probability that VLWF occurrence in…
Publication Type: Journal Article
Mathematical model and sensor development for measuring energy transfer from wildland fires
Year: 2014
Current practices for measuring high heat flux in scenarios such as wildland forest fires use expensive, thermopile-based sensors, coupled with mathematical models based on a semi-infinite-length scale. Although these sensors are acceptable for experimental testing in laboratories, high error rates or the need for water cooling limits their applications in field experiments. Therefore, a one-dimensional, finite-length scale, transient-heat conduction model was developed and combined with an inexpensive, thermocouple-based rectangular sensor, to create a rapidly deployable, non-cooled sensor…
Publication Type: Journal Article
The Effectiveness and Limitations of Fuel Modeling Using the Fire and Fuels Extension to the Forest Vegetation Simulator
Year: 2014
Fuel treatment effectiveness is often evaluated with fire behavior modeling systems that use fuel models to generate fire behavior outputs. How surface fuels are assigned,either using one of the 53 stylized fuel models or developing custom fuel models, can affect predicted fire behavior. We collected surface and canopy fuels data beforeand 1, 2, 5, and 8 years after prescribed fire treatments across 10 national forests in California. Two new methods of assigning fuel models within the Fire and FuelsExtension to the Forest Vegetation Simulator were evaluated. Field-based values for dead and…
Publication Type: Journal Article
Traditional Ecological Knowledge: A Model for Modern Fire Management?
Year: 2014
For many thousands of years, aboriginal peoples worldwide used fire to manage landscapes. In NorthAmerica, the frequency and extent of fire (both human caused and natural) were much reduced afterEuropean colonization. Fire exclusion became the policy in the United States for most of the 20thcentury as the country became more settled and industrialized. Past fire exclusion has helped producelandscapes that are highly susceptible to uncharacteristically severe wildfire. An urgent challengefor land managers today is to reduce fire risk through several means, including prescribed burning,without…
Publication Type: Report
Taming the Software Chaos: True to its Promise, IFTDSS Eases the Burden of Fuels Treatment Planning - and Does a Lot More Besides
Year: 2014
A key problem reported by the fuels treatment planning community is the difficulty and inefficiency of evaluating and then applying many planning tools and applications. Fuels specialists have struggled to find, load, and learn all the different fuels and fire planning models, not to mention the interface of running, adjusting, and inputting data specific to each model without the ability to easily share inputs/outputs between models. The Interagency Fuels Treatment Decision Support System (IFTDSS) was conceived as a way for users to learn one interface, access a variety of data and models…
Publication Type: Report
Graduate Research Innovation Awards Encourage Young Scientists to Ask Bold Questions
Year: 2014
The Joint Fire Science Program (JFSP), in partnership with the Association for Fire Ecology,offers Graduate Research Innovation (GRIN) awards yearly to a handful of top-quality graduatestudents conducting research in fire science. GRIN awards are intended to nurture the next generationof fire and fuels scientists and managers, enhance their professional development,help them become engaged with their community of peers, and equip them to tacklethe fire and fuels management challenges of today and tomorrow.
Publication Type: Report
Building trust, establishing credibility, and communicating fire issues with the public
Year: 2014
With more people than ever living in the vicinity of the wildland-urban interface, communicating wildland fire management activities and building trust with the public is paramount for safety. Although the time and resources it takes to build and maintain the public’s trust may seem daunting, it may be one of the most important factors determining the long-term viability of a fire management program. Trust is built over time through personal relationships with citizens and communities and also by demonstrating competence and establishing credibility. When trust and confidence have been…
Publication Type: Report
Examining fire-prone forest landscapes as coupled human and natural systems
Year: 2014
Fire-prone landscapes are not well studied as coupled human and natural systems (CHANS) and present many challengesfor understanding and promoting adaptive behaviors and institutions. Here, we explore how heterogeneity, feedbacks, and externaldrivers in this type of natural hazard system can lead to complexity and can limit the development of more adaptive approaches topolicy and management. Institutions and social networks can counter these limitations and promote adaptation. We also develop aconceptual model that includes a robust characterization of social subsystems for a fire-prone…
Publication Type: Journal Article
Modeling Regional-Scale Wildland Fire Emissions with the Wildland Fire Emissions Information System
Year: 2014
As carbon modeling tools become more comprehensive, spatialdata are needed to improve quantitative maps of carbon emissions from fire.The Wildland Fire Emissions Information System (WFEIS) provides mappedestimates of carbon emissions from historical forest fires in the United Statesthrough a web browser. WFEIS improves access to data and provides a consistentapproach to estimating emissions at landscape, regional, and continentalscales. The system taps into data and tools developed by the U.S. Forest Serviceto describe fuels, fuel loadings, and fuel consumption and merges informationfrom the…
Publication Type: Journal Article
Trust: A Planning Guide for Wildfire Agencies & Practitioners
Year: 2014
In increasing numbers, agency personnel, interest groups, and residents of at-risk communities are coming together to consider wildfire problems and taking steps to solve them. Particularly with regard to fire management, trust among parties is an essential element to successful local programs (Olsen & Shindler 2010, Lachapelle & McCool 2012). Despite a growing body of research literature on this topic, there are few practical guides for fire managers and practitioners about how to build and evaluate trust amongst stakeholders. Our intention here is to bring clarity to the trust…
Publication Type: Report
Assessing the Compatibility of Fuel Treatments, Wildfire Risk, and Conservation of Northern Spotted Owl Habitats and Populations in the Eastern Cascades: A Multi-Scale Analysis
Year: 2014
National Forests in the dry forest provinces on the east‐side of the Oregon and Washington Cascades have been managed under the guidelines of local Forest Plans and the Northwest Forest Plan (NWFP), both of which specify large areas of late‐successional reserves (LSRs). In contrast, the recently‐released USDI Fish and Wildlife Service Revised Recovery Plan (RRP) for the Northern Spotted Owl (NSO) calls for development of dynamic and shifting mosaics in the dry forests, and retention of LSRs in moist forests of eastern Cascades of Oregon and Washington, to address NSO habitat and wildfire…
Publication Type: Report
Trust: A planning guide for wildfire agencies & practitioners
Year: 2014
This planning guide is the outcome of an international collaboration of researchers and practitioners/field managers working in communities at risk of wildfire in three countries. Initially, the team of social scientists from Australia, Canada, and the United States utilized the collective research literature to examine factors that influence stakeholder trust. A working draft of this document was shared with experienced agency personnel and community leaders previous to interactive workshops and field visits in each country. This allowed for deliberations of the essential features of…
Publication Type: Report
Simulated western spruce budworm defoliation reduces torching and crowning potential: a sensitivity analysis using a physics-based fire model
Year: 2014
The widespread, native defoliator western spruce budworm (Choristoneura occidentalis Freeman) reduces canopy fuels, which might affect the potential for surface fires to torch (ignite the crowns of individual trees) or crown (spread between tree crowns). However, the effects of defoliation on fire behaviour are poorly understood. We used a physics-based fire model to examine the effects of defoliation and three aspects of how the phenomenon is represented in the model (the spatial distribution of defoliation within tree crowns, potential branchwood drying and model resolution). Our…
Publication Type: Journal Article
Challenges of assessing fire and burn severity using field measures, remote sensing and modelling
Year: 2014
Comprehensive assessment of ecological change after fires have burned forests and rangelands is important if we are to understand, predict and measure fire effects. We highlight the challenges in effective assessment of fire and burn severity in the field and using both remote sensing and simulation models. We draw on diverse recent research for guidance on assessing fire effects on vegetation and soil using field methods, remote sensing and models. We suggest that instead of collapsing many diverse, complex and interacting fire effects into a single severity index, the effects of fire should…
Publication Type: Journal Article