Research Database
Displaying 61 - 80 of 189
Using soil moisture information to better understand and predict wildfire danger: a review of recent developments and outstanding questions
Year: 2023
Soil moisture conditions are represented in fire danger rating systems mainly through simple drought indices based on meteorological variables, even though better sources of soil moisture information are increasingly available. This review summarises a growing body of evidence indicating that greater use of in situ, remotely sensed, and modelled soil moisture information in fire danger rating systems could lead to better estimates of dynamic live and dead herbaceous fuel loads, more accurate live and dead fuel moisture predictions, earlier warning of wildfire danger, and better forecasts of…
Publication Type: Journal Article
An aridity threshold model of fire sizes and annual area burned in extensively forested ecoregions of the western USA
Year: 2023
Wildfire occurrence varies among regions and through time due to the long-term impacts of climate on fuel structure and short-term impacts on fuel flammability. Identifying the climatic conditions that trigger extensive fire years at regional scales can enable development of area burned models that are both spatially and temporally robust, which is crucial for understanding the impacts of past and future climate change. We identified region-specific thresholds in fire-season aridity that distinguish years with limited, moderate, and extensive area burned for 11 extensively forested ecoregions…
Publication Type: Journal Article
Long-term mortality burden trends attributed to black carbon and PM2·5 from wildfire emissions across the continental USA from 2000 to 2020: a deep learning modelling study
Year: 2023
Background
Long-term improvements in air quality and public health in the continental USA were disrupted over the past decade by increased fire emissions that potentially offset the decrease in anthropogenic emissions. This study aims to estimate trends in black carbon and PM2·5 concentrations and their attributable mortality burden across the USA.
Methods
In this study, we derived daily concentrations of PM2·5 and its highly toxic black carbon component at a 1-km resolution in the USA from 2000 to 2020 via deep learning that integrated big data from satellites, models, and surface…
Publication Type: Journal Article
Vertical and Horizontal Crown Fuel Continuity Influences Group-Scale Ignition and Fuel Consumption
Year: 2023
A deeper understanding of the influence of fine-scale fuel patterns on fire behavior is essential to the design of forest treatments that aim to reduce fire hazard, enhance structural complexity, and increase ecosystem function and resilience. Of particular relevance is the impact of horizontal and vertical forest structure on potential tree torching and large-tree mortality. It may be the case that fire behavior in spatially complex stands differs from predictions based on stand-level descriptors of the fuel distribution and structure. In this work, we used a spatially explicit fire behavior…
Publication Type: Journal Article
Exploring and Testing Wildfire Risk Decision-Making in the Face of Deep Uncertainty
Year: 2023
We integrated a mechanistic wildfire simulation system with an agent-based landscape change model to investigate the feedbacks among climate change, population growth, development, landowner decision-making, vegetative succession, and wildfire. Our goal was to develop an adaptable simulation platform for anticipating risk-mitigation tradeoffs in a fire-prone wildland–urban interface (WUI) facing conditions outside the bounds of experience. We describe how five social and ecological system (SES) submodels interact over time and space to generate highly variable alternative futures even within…
Publication Type: Journal Article
Performance of Fire Danger Indices and Their Utility in Predicting Future Wildfire Danger Over the Conterminous United States
Year: 2023
Predicting current and future wildfire frequency and size is central to wildfire control and management. Multiple fire danger indices (FDIs) that incorporate weather and fuel conditions have been developed and utilized to support wildfire predictions and risk assessment. However, the scale-dependent performance of individual FDIs remains poorly understood, which leads to large uncertainty in the estimated fire sizes under climate change. Here, we calculate four commonly used FDIs over the conterminous United States using high-resolution (4 km) climate and fuel data sets for the 1984–2019…
Publication Type: Journal Article
Heading and backing fire behaviours mediate the influence of fuels on wildfire energy
Year: 2023
Background: Pre-fire fuels, topography, and weather influence wildfire behaviour and fire-driven ecosystem carbon loss. However, the pre-fire characteristics that contribute to fire behaviour and effects are often understudied for wildfires because measurements are difficult to obtain. Aims: This study aimed to investigate the relative contribution of pre-fire conditions to fire energy and the role of fire advancement direction in fuel consumption. Methods: Over 15 years, we measured vegetation and fuels in California mixed-conifer forests within days before and after wildfires, with co-…
Publication Type: Journal Article
DUET - Distribution of Understory using Elliptical Transport: A mechanistic model of leaf litter and herbaceous spatial distribution based on tree canopy structure
Year: 2023
Heterogeneity in surface fuels produced by overstory trees and understory vegetation is a major driver of fire behavior and ecosystem dynamics. Previous attempts at predicting tree leaf and needle litter accumulation over time have been constrained in scope to probabilistic models that consider a limited number of key factors influencing tree litter dispersal patterns and decomposition processes. We present a mechanistic model for estimating variation in surface fuels called the Distribution of Understory using Elliptical Transport (DUET). DUET uses a pre-generated voxelated canopy array and…
Publication Type: Journal Article
Atmospheric turbulence and wildland fires: a review
Year: 2023
The behaviour of wildland fires and the dispersion of smoke from those fires can be strongly influenced by atmospheric turbulent flow. The science to support that assertion has developed and evolved over the past 100+ years, with contributions from laboratory and field observations, as well as modelling experiments. This paper provides a synthesis of the key laboratory- and field-based observational studies focused on wildland fire and atmospheric turbulence connections that have been conducted from the early 1900s through 2021. Included in the synthesis are reports of anecdotal…
Publication Type: Journal Article
Modeling Wildland Firefighters’ Assessments of Structure Defensibility
Year: 2023
In wildland–urban interface areas, firefighters balance wildfire suppression and structure protection. These tasks are often performed under resource limitations, especially when many structures are at risk. To address this problem, wildland firefighters employ a process called “structure triage” to prioritize structure protection based on perceived defensibility. Using a dataset containing triage assessments of thousands of structures within the Western US, we developed a machine learning model that can improve the understanding of factors contributing to assessed structure defensibility.…
Publication Type: Journal Article
Consistent, high-accuracy mapping of daily and sub-daily wildfire growth with satellite observations
Year: 2023
Background: Fire research and management applications, such as fire behaviour analysis and emissions modelling, require consistent, highly resolved spatiotemporal information on wildfire growth progression. Aims: We developed a new fire mapping method that uses quality-assured sub-daily active fire/thermal anomaly satellite retrievals (2003–2020 MODIS and 2012–2020 VIIRS data) to develop a high-resolution wildfire growth dataset, including growth areas, perimeters, and cross-referenced fire information from agency reports. Methods: Satellite fire detections were buffered using a historical…
Publication Type: Journal Article
A comparison of smoke modelling tools used to mitigate air quality impacts from prescribed burning
Year: 2023
Background. Prescribed fire is a land management tool used extensively across the United States. Owing to health and safety risks, smoke emitted by burns requires appropriate manage- ment. Smoke modelling tools are often used to mitigate air pollution impacts. However, direct comparisons of tools’ predictions are lacking. Aims. We compared three tools commonly used to plan prescribed burning projects: the Simple Smoke Screening Tool, VSmoke and HYSPLIT. Methods. We used each tool to model smoke dispersion from prescribed burns conducted by the North Carolina Division of Parks and Recreation…
Publication Type: Journal Article
Incorporating pyrodiversity into wildlife habitat assessments for rapid post-fire management: A woodpecker case study
Year: 2023
Spatial and temporal variation in fire characteristics—termed pyrodiversity—areincreasingly recognized as important factors that structure wildlife communitiesin fire-prone ecosystems, yet there have been few attempts to incorporatepyrodiversity or post-fire habitat dynamics into predictive models of animaldistributionsandabundancetosupportpost-firemanagement.Weusetheblack-backed woodpecker—a species associated with burned forests—as a case study todemonstrate a pathway for incorporating pyrodiversity into wildlife habitatassessments for adaptive management. Employing monitoring data (2009–…
Publication Type: Journal Article
Changes in fire behavior caused by fire exclusion and fuel build-up vary with topography in California montane forests, USA
Year: 2022
Wildfire sizes and proportions burned with high severity effects are increasing in seasonally dry forests, especially in the western USA. A critical need in efforts to restore or maintain these forest ecosystems is to determine where fuel build-up caused by fire exclusion reaches thresholds that compromise resilience to fire. Empirical studies identifying drivers of fire severity patterns in actual wildfires can be confounded by co-variation of vegetation and topography and the stochastic effects of weather and rarely consider long-term changes in fuel caused by fire exclusion. To overcome…
Publication Type: Journal Article
Comparing smoke emissions and impacts under alternative forest management regimes
Year: 2022
Smoke from wildfires has become a growing public health issue around the world but especially in western North America and California. At the same time, managers and scientists recommend thinning and intentional use of wildland fires to restore forest health and reduce smoke from poorly controlled wildfires. Because of the changing climate and management paradigms, the evaluation of smoke impacts needs to shift evaluations from the scale of individual fire events to long-term fire regimes and regional impacts under different management strategies. To confront this challenge, we integrated…
Publication Type: Journal Article
Multi-Objective Scheduling of Fuel Treatments to Implement a Linear Fuel Break Network
Year: 2022
We developed and applied a spatial optimization algorithm to prioritize forest and fuel management treatments within a proposed linear fuel break network on a 0.5 million ha Western US national forest. The large fuel break network, combined with the logistics of conducting forest and fuel management, requires that treatments be partitioned into a sequence of discrete projects, individually implemented over the next 10–20 years. The original plan for the network did not consider how linear segments would be packaged into projects and how projects would be prioritized for treatments over time,…
Publication Type: Journal Article
Extreme fire spread events and area burned under recent and future climate in the western USA
Year: 2022
Aim: Wildfire activity in recent years is notable not only for an expansion of total area burned but also for large, single-day fire spread events that pose challenges to ecological systems and human communities. Our objectives were to gain new insight into the relationships between extreme single-day fire spread events, annual area burned, and fire season climate and to predict changes under future warming. Location: Fire-prone regions of the western USA. Time period: 2002–2020; a future +2°C scenario. Methods: We used a satellite-derived dataset of daily fire spread events and gridded…
Publication Type: Journal Article
Evaluating Satellite Fire Detection Products and an Ensemble Approach for Estimating Burned Area in the United States
Year: 2022
Fire location and burning area are essential parameters for estimating fire emissions. However, ground-based fire data (such as fire perimeters from incident reports) are often not available with the timeliness required for real-time forecasting. Fire detection products derived from satellite instruments such as the GOES-16 Advanced Baseline Imager or MODIS, on the other hand, are available in near real-time. Using a ground fire dataset of 2699 fires during 2017–2019, we fit a series of linear models that use multiple satellite fire detection products (HMS aggregate fire product, GOES-16,…
Publication Type: Journal Article
Designing forest restoration projects to optimize the application of broadcast burning
Year: 2022
Active forest restoration programs on western US national forests face multiple challenges to meet their broad ecological goals while designing projects that generate sufficient revenue to build and maintain private forest management capacity needed to expand the scale and scope of treatments. We explored ways to design projects where admixing of treatments along gradients of dry and moist mixed conifer forest types could maximize financial viability while including substantial area where broadcast burning could be applied in conjunction with other treatments. In general, we found that…
Publication Type: Journal Article
Sand and fire: applying the sandpile model of self-organised criticality to wildfire mitigation
Year: 2022
Background: Prescribed burns have been increasingly utilised in forest management in the past few decades. However, their effectiveness in reducing the risk of destructive wildfires has been debated. The sandpile model of self-organised criticality, first proposed to model natural hazards, has been recently applied to wildfire research for describing a negative linear relationship between the logarithm of fire size, in area burned, and the logarithm of fire incidence number of that size. Aims: We demonstrate the applicability of the sandpile model to an understanding of wildfire incidence and…
Publication Type: Journal Article
Pagination
- First page
- Previous page
- …
- 2
- 3
- 4
- 5
- 6
- …
- Next page
- Last page