Research Database
Displaying 1 - 9 of 9
Climate stress increases forest fire severity across the western United States
Year: 2013
Pervasive warming can lead to chronic stress on forest trees, which may contribute to mortality resultingfrom fire-caused injuries. Longitudinal analyses of forest plots from across the western US show that highpre-fire climatic water deficit was related to increased post-fire tree mortality probabilities. This relationshipbetween climate and fire was present after accounting for fire defences and injuries, and appeared to influencethe effects of crown and stem injuries. Climate and fire interactions did not vary substantially acrossgeographical regions, major genera and tree sizes. Our…
Publication Type: Journal Article
Fire-mediated pathways of stand development in Douglas-fir/ western hemlock forests of the Pacific Northwest, USA
Year: 2013
Forests dominated by Douglas-fir and western hemlock in the Pacific Northwest of the United States have strongly influenced concepts and policy concerning old-growth forest conservation. Despite the attention to their old-growth characteristics, a tendency remains to view their disturbance ecology in relatively simple terms, emphasizing infrequent, stand-replacing (SR) fire and an associated linear pathway toward development of those old-growth characteristics. This study uses forest stand- and age-structure data from 124 stands in the central western Cascades of Oregon to construct a…
Publication Type: Journal Article
Relationships between climate and macroscale area burned in the western United States
Year: 2013
Increased wildfire activity (e.g. number of starts, area burned, fire behaviour) across the western United States in recent decades has heightened interest in resolving climate–fire relationships. Macroscale climate–fire relationships were examined in forested and non-forested lands for eight Geographic Area Coordination Centers in the western United States, using area burned derived from the Monitoring Trends in Burn Severity dataset (1984–2010). Fire-specific biophysical variables including fire danger and water balance metrics were considered in addition to standard climate variables of…
Publication Type: Journal Article
Swiss Needle Cast
Year: 2013
Since the 1990s, there has been an epidemic of SNC affecting hundreds of thousands of acres of coastal Douglas-fir forests in Oregon, Washington and British Columbia. This constitutes one of the largest foliage-disease epidemics of conifers in North America. SNC is also a localized problem in many inland areas of the west, especially in Montana, Idaho, British Columbia, Washington, and Oregon.
Publication Type: Report
A Land Manager's Guide for Creating Fire-resistant Forests
Year: 2013
This publication provides an overview of how various silvicultural treatments affectfuel and fire behavior, and how to create fire-resistant forests. In properlytreated, fire-resistant forests, fire intensity is reduced and overstory treesare more likely to survive than in untreated forests. Fire-resistant forestsare not “fireproof” – under the right conditions, any forest will burn. Much ofwhat we present here is pertinent to the drier forests of the Pacific Northwest,which have become extremely dense and fire prone
Publication Type: Report
Fuel Treatments and Fire Severity: A Meta-Analysis
Year: 2013
We employed meta-analysis and information theory to synthesize findings reported in the literature on the effects of fuel treatments on subsequent fire intensity and severity. Data were compiled from 19 publications that reported observed fire responses from 62 treated versus untreated contrasts. Effect sizes varied widely and the most informative grouping of studies distinguished three vegetation types and three types of fuel treatment. The resultant meta-analytic model is highly significant (p<0.001) and explains 78% of the variability in reported observations of fuel treatment…
Publication Type: Report
Previous Fires Moderate Burn Severity of Subsequent Wildland Fires in Two Large Western US Wilderness Areas
Year: 2013
Wildland fire is an important natural process in many ecosystems. However, fire exclusion has reduced frequency of fire and area burned in many dry forest types, which may affect vegetation structure and composition, and potential fire behavior. In forests of the western U.S., these effects pose a challenge for fire and land managers who seek to restore the ecological process of fire to ecosystems. Recent research suggests that landscapes with unaltered fire regimes are more ‘‘self-regulating’’ than those that have experienced fire-regime shifts; in self-regulating systems, fire size and…
Publication Type: Journal Article