Research Database
Displaying 41 - 60 of 194
Before the fire: predicting burn severity and potential post-fire debris-flow hazards to conservation populations of the Colorado River Cutthroat Trout (Oncorhynchus clarkii pleuriticus)
Year: 2024
Background: Colorado River Cutthroat Trout (CRCT; Oncorhynchus clarkii pleuriticus) conservation populations may be at risk from wildfire and post-fire debris flows hazards. Aim: To predict burn severity and potential post-fire debris flow hazard classifications to CRCT conservation populations before wildfires occur. Methods: We used remote sensing, spatial analyses, and machine learning to model 28 wildfire incidents (2016–2020) and spatially predict burn severity from pre-wildfire environmental factors to evaluate the likelihood…
Publication Type: Journal Article
Proportion of forest area burned at high-severity increases with increasing forest cover and connectivity in western US watersheds
Year: 2023
Context In western US forests, the increasing frequency of large high-severity fires presents challenges for society. Quantifying how fuel conditions influence high-severity area is important for managing risks of large high-severity fires and understanding how they are changing with climate change. Fuel availability and heterogeneity influence high-severity fire probability, but heterogeneity is insensitive to some aspects of forest connectivity that are important to potential high-severity fire transmission and thus high-severity area. Objectives To quantify the effects of fuel availability…
Publication Type: Journal Article
Refuge-yeah or refuge-nah? Predicting locations of forest resistance and recruitment in a fiery world
Year: 2023
Climate warming, land use change, and altered fire regimes are driving ecological transformations that can have critical effects on Earth's biota. Fire refugia—locations that are burned less frequently or severely than their surroundings—may act as sites of relative stability during this period of rapid change by being resistant to fire and supporting post-fire recovery in adjacent areas. Because of their value to forest ecosystem persistence, there is an urgent need to anticipate where refugia are most likely to be found and where they align with environmental conditions that support post-…
Publication Type: Journal Article
The century-long shadow of fire exclusion: Historical data reveal early and lasting effects of fire regime change on contemporary forest composition
Year: 2023
Historical logging practices and fire exclusion have reduced the proportion of pine in mixed-conifer forests of the western United States. To better understand pine’s decline, we investigate the impact of historical logging on the tree regeneration layer and subsequent stand development over almost a century of fire exclusion. We use a unique dataset derived from contemporary (∼2016) remeasurement of 440 historical quadrats (∼4m2) in the central Sierra Nevada, California, in which overstory trees, tree regeneration, and microsite conditions were measured and mapped both before and after…
Publication Type: Journal Article
Less fuel for the next fire? Short-interval fire delays forest recovery and interacting drivers amplify effects
Year: 2023
As 21st-century climate and disturbance dynamics depart from historic baselines, ecosystem resilience is uncertain. Multiple drivers are changing simultaneously, and interactions among drivers could amplify ecosystem vulnerability to change. Subalpine forests in Greater Yellowstone (Northern Rocky Mountains, USA) were historically resilient to infrequent (100–300 year), severe fire. We sampled paired short-interval (<30-year) and long-interval (>125-year) post-fire plots most recently burned between 1988 and 2018 to address two questions: (1) How do short-interval fire, climate,…
Publication Type: Journal Article
Postglacial vegetation and fire history with a high-resolution analysis of tephra impacts, High Cascade Range, Oregon, USA
Year: 2023
The postglacial history of vegetation, wildfire, and climate in the Cascade Range (Oregon) is only partly understood. This study uses high-resolution macroscopic charcoal and pollen analysis from a 13-m, 14,500 years sediment record from Gold Lake, located in a montane forest, to reconstruct forest vegetation and fire history. The occurrence of three tephra layers, including a 78-cm airfall Mazama tephra, as well as highly laminated segments, allows one to study tephra impacts on vegetation at a fine temporal resolution. From the Late Glacial through the Younger Dryas, pollen spectra vary…
Publication Type: Journal Article
Higher burn severity stimulates postfire vegetation and carbon recovery in California
Year: 2023
As the climate continues to warm, the severity of wildfires is increasing. However, the potential impact of higher burn severity on ecosystem resilience and regional carbon balance is still not clear. There are ongoing debates regarding whether increased burn severity stimulates or delays postfire vegetation and carbon recovery. In this study, we utilized remote sensing data to analyze burn severity and vegetation observations, as well as model simulations to assess wildfire carbon emissions and ecosystem carbon fluxes. Our focus was on examining the dynamics of vegetation and carbon flux…
Publication Type: Journal Article
The eco-evolutionary role of fire in shaping terrestrial ecosystems
Year: 2023
1. Fire is an inherently evolutionary process, even though much more emphasis has been given to ecological responses of plants and their associated communities to fire. 2. Here, we synthesize contributions to a Special Feature entitled ‘Fire as a dynamic ecological and evolutionary force’ and place them in a broader context of fire research. Topics covered in this Special Feature include a perspective on the im-pacts of novel fire regimes on differential forest mortality, discussions on new ap-proaches to investigate vegetation-fire feedbacks and resulting plant syndromes,…
Publication Type: Journal Article
High-severity fire drives persistent floristic homogenization in human-altered forests
Year: 2023
Ecological disturbance regimes across the globe are being altered via direct and indirect human influences. Biodiversity loss at multiple scales can be a direct outcome of these shifts. Fire, especially in dry forests, is an ecological disturbance that is experiencing dramatic changes due to climate change, fire suppression, increased human population in fire-prone areas, and alterations to vegetation composition and structure. Dry western conifer forests that historically experienced frequent, low-severity fires are now increasingly burning at high severity. Relatively little work has been…
Publication Type: Journal Article
Heading and backing fire behaviours mediate the influence of fuels on wildfire energy
Year: 2023
Background: Pre-fire fuels, topography, and weather influence wildfire behaviour and fire-driven ecosystem carbon loss. However, the pre-fire characteristics that contribute to fire behaviour and effects are often understudied for wildfires because measurements are difficult to obtain. Aims: This study aimed to investigate the relative contribution of pre-fire conditions to fire energy and the role of fire advancement direction in fuel consumption. Methods: Over 15 years, we measured vegetation and fuels in California mixed-conifer forests within days before and after wildfires, with co-…
Publication Type: Journal Article
Too hot, too cold, or just right: Can wildfire restore dry forests of the interior Pacific Northwest?
Year: 2023
As contemporary wildfire activity intensifies across the western United States, there is increasing recognition that a variety of forest management activities are necessary to restore ecosystem function and reduce wildfire hazard in dry forests. However, the pace and scale of current, active forest management is insufficient to address restoration needs. Managed wildfire and landscape-scale prescribed burns hold potential to achieve broad-scale goals but may not achieve desired outcomes where fire severity is too high or too low. To explore the potential for fire alone to restore dry forests…
Publication Type: Journal Article
Consistent spatial scaling of high-severity wildfire can inform expected future patterns of burn severity
Year: 2023
Increasing wildfire activity in forests worldwide has driven urgency in understanding current and future fire regimes. Spatial patterns of area burned at high severity strongly shape forest resilience and constitute a key dimension of fire regimes, yet remain difficult to predict. To characterize the range of burn severity patterns expected within contemporary fire regimes, we quantified scaling relationships relating fire size to patterns of burn severity. Using 1615 fires occurring across the Northwest United States between 1985 and 2020, we evaluated scaling relationships within fire…
Publication Type: Journal Article
Different approaches make comparing studies of burn severity challenging: a review of methods used to link remotely sensed data with the Composite Burn Index
Year: 2023
The Composite Burn Index (CBI) is commonly linked to remotely sensed data to understand spatial and temporal patterns of burn severity. However, a comprehensive understanding of the tradeoffs between different methods used to model CBI with remotely sensed data is lacking. To help understand the current state of the science, provide a blueprint towards conducting broad- scale meta-analyses, and identify key decision points and potential rationale, we conducted a review of studies that linked remotely sensed data to continuous estimates of burn severity measured with the CBI and related…
Publication Type: Journal Article
Exceptional variability in historical fire regimes across a western Cascades landscape, Oregon, USA
Year: 2023
Detailed information about the historical range of variability in wildfire activity informs adaptation to future climate and disturbance regimes. Here, we describe one of the first annually resolved reconstructions of historical (1500–1900 ce) fire occurrence in coast Douglas-fir dominated forests of the west slope of the Cascade Range in western Oregon. Mean fire return intervals (MFRIs) across 16 sites within our study area ranged from 6 to 165 years. Variability in MFRIs was strongly associated with average maximum summer vapor pressure deficit. Fire occurred infrequently in Douglas-fir…
Fire Effects and Fire Ecology, Fire History, Mixed-Conifer Management, Restoration and Hazardous Fuel Reduction
Publication Type: Journal Article
Fire refugia are robust across Western US forested ecoregions, 1986–2021
Year: 2023
In the Western US, area burned and fire size have increased due to the influences of climate change, long-term fire suppression leading to higher fuel loads, and increased ignitions. However, evidence is less conclusive about increases in fire severity within these growing wildfire extents. Fires burn unevenly across landscapes, leaving islands of unburned or less impacted areas, known as fire refugia. Fire refugia may enhance post-fire ecosystem function and biodiversity by providing refuge to species and functioning as seed sources after fires. In this study, we evaluated whether the…
Publication Type: Journal Article
Reduced fire severity offers near-term buffer to climate-driven declines in conifer resilience across the western United States
Year: 2023
Increasing fire severity and warmer, drier postfire conditions are making forests in the western United States (West) vulnerable to ecological transformation. Yet, the relative importance of and interactions between these drivers of forest change remain unresolved, particularly over upcoming decades. Here, we assess how the interactive impacts of chang-ing climate and wildfire activity influenced conifer regeneration after 334 wildfires, using a dataset of postfire conifer regeneration from 10,230 field plots. Our findings highlight declining regeneration capacity across the West over the…
Publication Type: Journal Article
Widespread exposure to altered fire regimes under 2 °C warming is projected to transform conifer forests of the Western United States
Year: 2023
Changes in wildfire frequency and severity are altering conifer forests and pose threats to biodiversity and natural climate solutions. Where and when feedbacks between vegetation and fire could mediate forest transformation are unresolved. Here, for the western United States, we used climate analogs to measure exposure to fire-regime change; quantified the direction and spatial distribution of changes in burn severity; and intersected exposure with fire-resistance trait data. We measured exposure as multivariate dissimilarities between contemporary distributions of fire frequency, burn…
Publication Type: Journal Article
High-severity burned area and proportion exceed historic conditions in Sierra Nevada, California, and adjacent ranges
Year: 2023
Although fire is a fundamental ecological process in western North American forests, climate warming and accumulating forest fuels due to fire suppression have led to wildfires that burn at high severity across larger fractions of their footprint than were historically typical. These trends have spiked upwards in recent years and are particularly pronounced in the Sierra Nevada–Southern Cascades ecoregion of California, USA, and neighboring states. We assessed annual area burned (AAB) and percentage of area burned at high and low-to-moderate severity for seven major forest types in this…
Publication Type: Journal Article
Fire severity infuences large wood and stream ecosystem responses in western Oregon watersheds
Year: 2023
Background. Wildfre is a landscape disturbance important for stream ecosystems and the recruitment of large wood (LW; LW describes wood in streams) into streams, with post-fre management also playing a role. We used a stratifed random sample of 4th-order watersheds that represent a range of pre-fre stand age and fre severity from unburned to entirely burned watersheds to 1) determine whether watershed stand age (pre-fre) or fre severity afected riparianoverstory survival, riparian coarse wood (CW; CW describes wood in riparian areas), LW, or in-stream physical, chemical, and biological…
Publication Type: Journal Article
Response of forest productivity to changes in growth and fire regime due to climate change
Year: 2023
Climate change is having complex impacts on the boreal forest, modulating both tree growth limiting factors and fire regime. However, these aspects are usually projected independently when estimating climate change effect on the boreal forest. Using a combination of 3 different methods, our goal is to assess the combined impact of changes in growth and fire regime due to climate change on the timber supply at the transitions from closed to open boreal coniferous forests in Québec, Canada. In order to identify the areas that are likely to be the most sensitive to climate change, we projected…
Publication Type: Journal Article