Research Database
Displaying 161 - 180 of 198
Restoration of dry forests in eastern Oregon: A field guide
Year: 2013
Dry Forest landscapes dominated by pine and mixed-conifer forests composed of ponderosa pine and associated coniferous species, such as Douglas-fir and white or grand fir, are extensive in western North America, including the Pacific Northwest (Franklin and Dyrness, 1988). These forests typically occupy landscapes that are moisture limited and historically experienced disturbance regimes that included frequent wildfire. On many sites fires were predominantly low severity but mixed-severity and, occasionally, even high-severity wildfire occurred, the latter primarily in areas at higher…
Publication Type: Report
Powered by Oregon - The potential for woody biomass
Year: 2013
As a fuel, wood has been with us since humans tamed fire. So what’s the big deal? Why the renewed interest in wood as a source of energy? If we imagine a way to power Oregon that is less dependent on fossil fuels, that is built instead on renewable and homegrown sources of energy, then woody fuel should be a significant part of the picture. Why do we import oil or propane to heat a rural town, for instance, when abundant, clean-burning fuel is a few miles away? Using local fuel creates jobs and keeps money at home. Many small Oregon towns could use more of both. Is it sustainable? Yes. In…
Publication Type: Report
Is burn severity related to fire intensity? Observations from landscape scale remote sensing
Year: 2013
Biomass burning by wildland fires has significant ecological, social and economic impacts. Satellite remote sensing provides direct measurements of radiative energy released by the fire (i.e. fire intensity) and surrogate measures of ecological change due to the fire (i.e. fire or burn severity). Despite anecdotal observations causally linking fire intensity with severity, the nature of any relationship has not been examined over extended spatial scales. We compare fire intensities defined by Moderate Resolution Imaging Spectroradiometer Fire Radiative Power (MODIS FRP) products with Landsat-…
Publication Type: Journal Article
Climate stress increases forest fire severity across the western United States
Year: 2013
Pervasive warming can lead to chronic stress on forest trees, which may contribute to mortality resulting from fire-caused injuries. Longitudinal analyses of forest plots from across the western US show that high pre-fire climatic water deficit was related to increased post-fire tree mortality probabilities. This relationship between climate and fire was present after accounting for fire defences and injuries, and appeared to influence the effects of crown and stem injuries. Climate and fire interactions did not vary substantially across geographical regions, major genera and tree sizes. Our…
Publication Type: Journal Article
Fire regimes of quaking aspen in the Mountain West
Year: 2013
Quaking aspen, the most widespread tree species in North America, reproduces primarily by resprouting from roots. In some stands, mortality from fire encourages sprouting and prevents conifers from eventually replacing aspen. In other areas, aspen can form stable communities that do not require fire to regenerate or persist. USGS fire ecologist Doug Shinneman and colleagues reviewed literature about aspen populations and fire, summarized research findings, and suggested a classification system for aspen across the western mountainous United States. The scientists proposed five aspen “fire…
Publication Type: Journal Article
Fire-mediated pathways of stand development in Douglas-fir/ western hemlock forests of the Pacific Northwest, USA
Year: 2013
Forests dominated by Douglas-fir and western hemlock in the Pacific Northwest of the United States have strongly influenced concepts and policy concerning old-growth forest conservation. Despite the attention to their old-growth characteristics, a tendency remains to view their disturbance ecology in relatively simple terms, emphasizing infrequent, stand-replacing (SR) fire and an associated linear pathway toward development of those old-growth characteristics. This study uses forest stand- and age-structure data from 124 stands in the central western Cascades of Oregon to construct a…
Publication Type: Journal Article
Relationships between climate and macroscale area burned in the western United States
Year: 2013
Increased wildfire activity (e.g. number of starts, area burned, fire behaviour) across the western United States in recent decades has heightened interest in resolving climate–fire relationships. Macroscale climate–fire relationships were examined in forested and non-forested lands for eight Geographic Area Coordination Centers in the western United States, using area burned derived from the Monitoring Trends in Burn Severity dataset (1984–2010). Fire-specific biophysical variables including fire danger and water balance metrics were considered in addition to standard climate variables of…
Publication Type: Journal Article
Surface fuel treatments in young, regenerating stands affect wildfire severity in a mixed conifer forest, eastside Cascade Range, Washington, USA
Year: 2012
Previous studies have debated the flammability of young regenerating stands, especially those in a matrix of mature forest, and no consensus has emerged as to whether young stands are inherently prone to high severity wildfire. This topic has recently been addressed using spatial imagery, and weak inferences were made given the scale mismatch between the coarse resolution of spatial imagery and the fine resolution of mechanisms driving fire severity. We collected empirical stand and fire-severity data from 44 regenerating stands that are interspersed in mature, mid-elevation forests in the…
Publication Type: Journal Article
Fuel Variability Following Wildfire in Forests with Mixed Severity Fire Regimes, Cascade Range, USA
Year: 2012
Fire severity influences post-burn structure and composition of a forest and the potential for a future fire to burn through the area. The effects of fire on forests with mixed severity fire regimes are difficult to predict and interpret because the quantity, structure, and composition of forest fuels vary considerably. This study examines the relationship between fire severity and post-burn fuel characteristics in forests with mixed severity fire regimes. We sampled live and dead canopy and…
Publication Type: Journal Article
Pattern and process of prescribed fires influence effectiveness at reducing wildfire severity in dry coniferous forests
Year: 2012
We examined the effects of three early season (spring) prescribed fires on burn severity patterns of summer wildfires that occurred 1–3 years post- treatment in a mixed conifer forest in central Idaho. Wildfire and prescribed fire burn severities were estimated as the difference in normalized burn ratio (dNBR) using Landsat imagery. We used GIS derived vegetation, topography, and treatment variables to generate models predicting the wildfire burn severity of 1286–5500 30- m pixels within and around treated areas. We found that wildfire severity was significantly lower in treated areas than in…
Publication Type: Journal Article
Meta-analysis of avian and small-mammal response to fire severity and fire surrogate treatments in US fire-prone forests
Year: 2012
Management in fire-prone ecosystems relies widely upon application of prescribed fire and/or fire surrogate (e.g., forest thinning) treatments to maintain biodiversity and ecosystem function. Recently, published literature examining wildlife response to fire and fire management has increased rapidly. However, none of this literature has been synthesized quantitatively, precluding assessment of consistent patterns of wildlife response among treatment types. Using meta-analysis, we examined the scientific literature on vertebrate demographic responses to burn severity (low/moderate, high), fire…
Publication Type: Journal Article
Long and Short-Term Effects of Fire on Soil Charcoal of a Conifer Forest in Southwest Oregon
Year: 2012
In 2002, the Biscuit Wildfire burned a portion of the previously established, replicated conifer unthinned and thinned experimental units of the Siskiyou Long-Term Ecosystem Productivity (LTEP) experiment, southwest Oregon. Charcoal C in pre and post-fire O horizon and mineral soil was quantified by physical separation and a peroxide-acid digestion method. The abrupt, short-term fire event caused O horizon charcoal C to increase by a factor of ten to >200 kg C ha−1. The thinned wildfire treatment produced less charcoal C than unthinned wildfire and thinned prescribed fire treatments. The…
Publication Type: Journal Article
Spatially extensive reconstructions show variable-severity fire and heterogeneous structure in historical western United States dry forests
Year: 2012
Aim Wildfire is often considered more severe now than historically in dry forests of the western United States. Tree-ring reconstructions, which suggest that historical dry forests were park-like with large, old trees maintained by low-severity fires,are from small, scattered studies. To overcome this limitation, we developed spatially comprehensive reconstructions across 927,000 ha in four landscapes, using anew method based on land surveys from c. 1880. Location Dry forests of the western United States. Methods We reconstructed forest structure for four large dry-forest landscapes using…
Publication Type: Journal Article
A Comprehensive Guide to Fuel Management Practices for Dry Mixed Conifer Forests in the Northwestern United States
Year: 2012
This guide describes the benefits, opportunities, and trade-offs concerning fuel treatments in the dry mixed conifer forests of northern California and the Klamath Mountains, Pacific Northwest Interior, northern and central Rocky Mountains, and Utah. Multiple interacting disturbances and diverse physical settings have created a forest mosaic with historically low- to mixed-severity fire regimes. Analysis of forest inventory data found nearly 80 percent of these forests rate hazardous by at least one measure and 20 to 30 percent rate hazardous by multiple measures. Modeled mechanical…
Publication Type: Report
Ecological effects of alternative fuel-reduction treatments: highlights of the National Fire and Fire Surrogate study (FSS)
Year: 2012
The 12-site National Fire and Fire Surrogate study (FFS) was a multivariate experiment that evaluated ecological consequences of alternative fuel-reduction treatments in seasonally dry forests of the US. Each site was a replicated experiment with a common design that compared an un-manipulated control, prescribed fire, mechanical and mechanical + fire treatments. Variables within the vegetation, fuelbed, forest floor and soil, bark beetles, tree diseases and wildlife were measured in 10-ha stands, and ecological response was compared among treatments at the site level, and across sites, to…
Publication Type: Journal Article
Estimation of Wildfire Size and Risk Changes Due to Fuels Treatments
Year: 2012
Human land use practices, altered climates, and shifting forest and fire management policies have increased the frequency of large wildfires several-fold. Mitigation of potential fire behaviour and fire severity have increasingly been attempted through pre-fire alteration of wildland fuels using mechanical treatments and prescribed fires. Despite annual treatment of more than a million hectares of land, quantitative assessments of the effectiveness of existing fuel at reducing the size of actual wildfires or how they might alter the risk of burning across landscapes are currently lacking.…
Publication Type: Journal Article
Temporal dynamics and decay of coarse wood in early seral habitats of dry-mixed conifer forests in Oregon’s Eastern Cascades
Year: 2012
Early seral forest habitats are increasingly valued for the unique structural resources they provide in many western US forests. Coarse woody detritus (CWD) are a significant feature of this developmental stage and are highly dynamic, suggesting these environments exhibit temporally diverse structural conditions prior to forest canopy closure. In dry-mixed conifer forests, snags are hypothesized to decay slower than logs making long-term dynamics in these forests dependent on snag fall, breakage and the decay rates of both standing and surface CWD. We estimated snag fall and breakage rates…
Publication Type: Journal Article
The Effects of Forest Fuel-Reduction Treatments in the United States
Year: 2012
The current conditions of many seasonally dry forests in the western and southern United States, especially those that once experienced low- to moderate-intensity fire regimes, leave them uncharacteristically susceptible to high-severity wildfire. Both prescribed fire and its mechanical surrogates are generally successful in meeting short-term fuel-reduction objectives such that treated stands are more resilient to high-intensity wildfire. Most available evidence suggests that these objectives are typically accomplished with few unintended consequences, since most ecosystem components (…
Publication Type: Journal Article
Alteration and Recovery of Slash Pile Burn Sites in the Restoration of a Fire-Maintained Ecosystem
Year: 2012
Restoration practices incorporating timber harvest (e.g. to remove undesirable species or reduce tree densities) may generate unmerchantable wood debris that is piled and burned for fuel reduction. Slash pile burns are common in longleaf pine ecosystem restoration that involves hardwood removal before reintroduction of frequent prescribed fire. In this context, long-lasting effects of slash pile burns may complicate restoration outcomes due to unintended alterations to vegetation, soils, and the soil seed bank. In this study, our objectives were to (1) examine alterations to the soil seed…
Publication Type: Journal Article
Seasonal variation in surface fuel moisture between unthinned and thinned mixed conifer forest, northern California, USA
Year: 2012
Reducing stand density is often used as a tool for mitigating the risk of high-intensity crown fires. However, concern has been expressed that opening stands might lead to greater drying of surface fuels, contributing to increased fire risk. The objective of this study was to determine whether woody fuel moisture differed between unthinned and thinned mixed-conifer stands. Sections of logs representing the 1000- and 10 000-h fuel sizes were placed at 72 stations within treatment units in the fall (autumn) of 2007. Following snow-melt in 2008, 10-h fuel sticks were added and all fuels were…
Publication Type: Journal Article