Research Database
Displaying 41 - 46 of 46
Climate changes and wildfire alter vegetation of Yellowstone National Park, but forest cover persists
Year: 2017
We present landscape simulation results contrasting effects of changing climates on forest vegetation and fire regimes in Yellowstone National Park, USA, by mid-21st century. We simulated potential changes to fire dynamics and forest characteristics under three future climate projections representing a range of potential future conditions using the FireBGCv2 model. Under the future climate scenarios with moderate warming (>2°C) and moderate increases in precipitation (3–5%), model simulations resulted in 1.2–4.2 times more burned area, decreases in forest cover (10–44%), and reductions in…
Publication Type: Journal Article
Assessing vulnerabilities and adapting to climate change in northwestern U.S. forests
Year: 2017
Multiple climate change vulnerability assessments in the Pacific Northwest region of the USA provide the scientific information needed to begin adaptation in forested landscapes. Adaptation options developed by resource managers in conjunction with these assessments, newly summarized in the Climate Change Adaptation Library of the Western United States, provide an extensive choice of peer-reviewed climate-smart management strategies and tactics. More adaptation options are available for vegetation than for any other resource category, allowing vegetation management to be applied across a…
Publication Type: Journal Article
Assessing Landscape Vulnerability to Wildfire in the USA
Year: 2016
Wildfire is an ever present, natural process shaping landscapes. Having the ability to accurately measure and predict wildfire occurrence and impacts to ecosystem goods and services, both retrospectively and prospectively, is critical for adaptive management of landscapes. Landscape vulnerability is a concept widely utilized in the ecosystem management literature that has not been explicitly defined, particularly with regard to wildfire. Vulnerability more broadly is defined by three primary components: exposure to the stressor, sensitivity to a range of stressor variability, and resilience…
Publication Type: Journal Article
Defining extreme wildland fires using geospatial and ancillary metrics
Year: 2014
There is a growing professional and public perception that ‘extreme’ wildland fires are becoming more common due to changing climatic conditions. This concern is heightened in the wildland–urban interface where social and ecological effects converge. ‘Mega-fires’, ‘conflagrations’, ‘extreme’ and ‘catastrophic’ are descriptors interchangeably used increasingly to describe fires in recent decades in the US and globally. It is necessary to have consistent, meaningful and quantitative metrics to define these perceived ‘extreme’ fires, given studies predict an increased frequency of large and…
Publication Type: Journal Article
Assessing social vulnerability to climate change in human communities near public forests and grasslands: A framework for resource managers and planners
Year: 2013
Public land management agencies have incorporated the concept of vulnerability into protocols for assessing and planning for climate change impacts on public forests and grasslands. However, resource managers and planners have little guidance for how to address the social aspects of vulnerability in these assessments and plans. Failure to assess social vulnerability to climate change during management planning could compromise land management agencies’ adaptation strategies as well as public support for these strategies. We provide a framework for understanding and assessing social…
Publication Type: Journal Article
Effects of Ungulate Herbivory on Aspen, Cottonwood, and Willow Development Under Forest Fuels Treatment Regimes
Year: 2012
Herbivory by domestic and wild ungulates can dramatically affect vegetation structure, composition and dynamics in nearly every terrestrial ecosystem of the world. These effects are of particular concern in forests of western North America, where intensive herbivory by native and domestic ungulates has the potential to substantially reduce or eliminate deciduous, highly palatable species of aspen (Populus tremuloides), cottonwood (Populus trichocarpa), and willow (Salix spp.). In turn, differential herbivory pressure may favor greater establishment of unpalatable conifers that serve as ladder…
Publication Type: Journal Article