Research Database
Displaying 61 - 68 of 68
USGS Fire Science - Fire danger monitoring and forecasting
Year: 2012
The United States Geological Survey (USGS) uses moderate resolution satellite data to assess live fuel condition for estimating fire danger. Using 23 years of vegetation condition measurements, we are able to determine the relative greenness of current live fuels. High relative greenness values indicate the vegetation is healthy and vigorous; low greenness values indicate the vegetation is under stress, dry (possibly from drought), behind in annual development, or dead. Forest, shrub, and grassland vegetation with low relative greenness are susceptible to fire ignition during the fire season…
Publication Type: Report
Long-term perspective on wildfires in the western USA
Year: 2012
Understanding the causes and consequences of wildfires in forests of the western United States requires integrated information about fire, climate changes, and human activity on multiple temporal scales. We use sedimentary charcoal accumulation rates to construct long-term variations in fire during the past 3,000 y in the American West and compare this record to independent firehistory data from historical records and fire scars. There has been a slight decline in burning over the past 3,000 y, with the lowest levels attained during the 20th century and during the Little Ice Age (LIA, ca.…
Publication Type: Report
Carbon Outcomes from Fuels Treatment and Bioenergy Production in a Sierra Nevada Forest
Year: 2012
In temperate conifer forests of the Western USA, there is active debate whether fuels reduction treatments and bioenergy production result in decreased carbon emissions and increased carbon sequestration compared to a no-action alternative. To address this debate over net carbon stocks, we performed a carbon life-cycle analysis on data from a fuels reduction treatment in a temperate, dry conifer forest in the northern Sierra Nevada of California, USA. The analysis tracks the net ecosystem carbon balance over 50 years for two scenarios (1) fuels reduction treatment combined with bioenergy…
Publication Type: Journal Article
The leaf-area shrinkage effect can bias paleoclimate and ecology research
Year: 2012
Premise of the Study: Leaf area is a key trait that links plant form, function, and environment. Measures of leaf area can be biased because leaf area is often estimated from dried or fossilized specimens that have shrunk by an unknown amount. We tested the common assumption that this shrinkage is negligible. Methods: We measured shrinkage by comparing dry and fresh leaf area in 3401 leaves of 380 temperate and tropical species and used phylogenetic and trait-based approaches to determine predictors of this shrinkage. We also tested the effects of rehydration and simulated fossilization on…
Publication Type: Journal Article
Drought-Driven Disturbance History Characterizes a Southern Rocky Mountain Subalpine Forest
Year: 2012
The view that subalpine forest vegetation dynamics in western North America are "driven" by a particular disturbance type (i.e. fire) has shaped our understanding of their disturbance regimes. In the wake of a recent (1990s) landscape-extent spruce beetle (Dendroctonus rufipennis Kirby) outbreak in the southern Rocky Mountains, we re-examined the temporal continuity in disturbance types and interactions and the possible role of drought on their occurrence by reconstructing antecedent disturbances for 11 sites across the Markagunt Plateau, southern Utah, USA. Multiple consistent lines of…
Publication Type: Journal Article
Timing of carbon emissions from global forest clearance
Year: 2012
Land-use change, primarily from conventional agricultural expansion and deforestation, contributes to approximately 17% of global greenhouse-gas emissions. The fate of cleared wood and subsequent carbon storage as wood products, however, has not been consistently estimated, and is largely ignored or oversimplified by most models estimating greenhouse-gas emissions from global land-use conversion. Here, we estimate the fate of cleared wood and timing of atmospheric carbon emissions for 169 countries. We show that 30 years after forest clearance the percentage of carbon stored in wood products…
Publication Type: Journal Article
FOFEM: The First-Order Fire Effects Model Adapts to the 21st Century
Year: 2009
Technology is playing an increasingly pivotal role in the efficiency and effectiveness of fire management. The First Order Fire Effects Model (FOFEM) is a widely used computer application that predicts the immediate or ‘first-order’ effects of fire: fuel consumption, tree mortality, emissions, and soil heating. FOFEM’s simple operation and comprehensive features have made it a workhorse for fire and resource professionals who need to be able to predict, assess and plan for fire’s effects. Over the last decade FOFEM has undergone several upgrades as developers continue to improve function and…
Publication Type: Report
Estimating volume, biomass, and potential emissions of hand-piled fuels
Year: 2009
Dimensions, volume, and biomass were measured for 121 hand-constructed piles composed primarily of coniferous (n = 63) and shrub/hardwood (n = 58) material at sites in Washington and California. Equations using pile dimensions, shape, and type allow users to accurately estimate the biomass of hand piles. Equations for estimating true pile volume from simple geometric shapes and measurements of pile dimensions were also developed for users who require estimates of pile volume for regulatory reporting. Biomass and volume estimation equations were developed to allow users to estimate either…
Publication Type: Report