Research Database
Displaying 1 - 20 of 23
Performance of Fire Danger Indices and Their Utility in Predicting Future Wildfire Danger Over the Conterminous United States
Year: 2023
Predicting current and future wildfire frequency and size is central to wildfire control and management. Multiple fire danger indices (FDIs) that incorporate weather and fuel conditions have been developed and utilized to support wildfire predictions and risk assessment. However, the scale-dependent performance of individual FDIs remains poorly understood, which leads to large uncertainty in the estimated fire sizes under climate change. Here, we calculate four commonly used FDIs over the conterminous United States using high-resolution (4 km) climate and fuel data sets for the 1984–2019…
Publication Type: Journal Article
Using soil moisture information to better understand and predict wildfire danger: a review of recent developments and outstanding questions
Year: 2023
Soil moisture conditions are represented in fire danger rating systems mainly through simple drought indices based on meteorological variables, even though better sources of soil moisture information are increasingly available. This review summarises a growing body of evidence indicating that greater use of in situ, remotely sensed, and modelled soil moisture information in fire danger rating systems could lead to better estimates of dynamic live and dead herbaceous fuel loads, more accurate live and dead fuel moisture predictions, earlier warning of wildfire danger, and better forecasts of…
Publication Type: Journal Article
DUET - Distribution of Understory using Elliptical Transport: A mechanistic model of leaf litter and herbaceous spatial distribution based on tree canopy structure
Year: 2023
Heterogeneity in surface fuels produced by overstory trees and understory vegetation is a major driver of fire behavior and ecosystem dynamics. Previous attempts at predicting tree leaf and needle litter accumulation over time have been constrained in scope to probabilistic models that consider a limited number of key factors influencing tree litter dispersal patterns and decomposition processes. We present a mechanistic model for estimating variation in surface fuels called the Distribution of Understory using Elliptical Transport (DUET). DUET uses a pre-generated voxelated canopy array and…
Publication Type: Journal Article
Modeling Wildland Firefighters’ Assessments of Structure Defensibility
Year: 2023
In wildland–urban interface areas, firefighters balance wildfire suppression and structure protection. These tasks are often performed under resource limitations, especially when many structures are at risk. To address this problem, wildland firefighters employ a process called “structure triage” to prioritize structure protection based on perceived defensibility. Using a dataset containing triage assessments of thousands of structures within the Western US, we developed a machine learning model that can improve the understanding of factors contributing to assessed structure defensibility.…
Publication Type: Journal Article
A comparison of smoke modelling tools used to mitigate air quality impacts from prescribed burning
Year: 2023
Background. Prescribed fire is a land management tool used extensively across the United States. Owing to health and safety risks, smoke emitted by burns requires appropriate manage- ment. Smoke modelling tools are often used to mitigate air pollution impacts. However, direct comparisons of tools’ predictions are lacking. Aims. We compared three tools commonly used to plan prescribed burning projects: the Simple Smoke Screening Tool, VSmoke and HYSPLIT. Methods. We used each tool to model smoke dispersion from prescribed burns conducted by the North Carolina Division of Parks and Recreation…
Publication Type: Journal Article
Atmospheric turbulence and wildland fires: a review
Year: 2023
The behaviour of wildland fires and the dispersion of smoke from those fires can be strongly influenced by atmospheric turbulent flow. The science to support that assertion has developed and evolved over the past 100+ years, with contributions from laboratory and field observations, as well as modelling experiments. This paper provides a synthesis of the key laboratory- and field-based observational studies focused on wildland fire and atmospheric turbulence connections that have been conducted from the early 1900s through 2021. Included in the synthesis are reports of anecdotal…
Publication Type: Journal Article
Optimizing the implementation of a forest fuel break network
Year: 2023
Methods and models to design, prioritize and evaluate fuel break networks have potential application in many fire-prone ecosystems where major increases in fuel management investments are planned in response to growing incidence of wildfires. A key question facing managers is how to scale treatments into manageable project areas that meet operational and administrative constraints, and then prioritize their implementation over time to maximize fire management outcomes. We developed and tested a spatial modeling system to optimize the implementation of a proposed 3,538 km fuel break network…
Economic Impacts of Fire, Fuels and Fuel Treatments, Risk Assessment and Analysis, Social and Community Impacts of Fire
Publication Type: Journal Article
Projecting live fuel moisture content via deep learning
Year: 2023
Background: Live fuel moisture content (LFMC) is a key environmental indicator used to monitor for high wildfire risk conditions. Many statistical models have been proposed to predict LFMC from remotely sensed data; however, almost all these estimate current LFMC (nowcasting models). Accurate modelling of LFMC in advance (projection models) would provide wildfire managers with more timely information for assessing and preparing for wildfire risk. Aims: The aim of this study was to investigate the potential for deep learning models to predict LFMC across the continental United States 3 months…
Publication Type: Journal Article
Incorporating pyrodiversity into wildlife habitat assessments for rapid post-fire management: A woodpecker case study
Year: 2023
Spatial and temporal variation in fire characteristics—termed pyrodiversity—areincreasingly recognized as important factors that structure wildlife communitiesin fire-prone ecosystems, yet there have been few attempts to incorporatepyrodiversity or post-fire habitat dynamics into predictive models of animaldistributionsandabundancetosupportpost-firemanagement.Weusetheblack-backed woodpecker—a species associated with burned forests—as a case study todemonstrate a pathway for incorporating pyrodiversity into wildlife habitatassessments for adaptive management. Employing monitoring data (2009–…
Publication Type: Journal Article
Avoided wildfire impact modeling with counterfactual probabilistic analysis
Year: 2023
Assessing the effectiveness and measuring the performance of fuel treatments and other wildfire risk mitigation efforts are challenging endeavors. Perhaps the most complicated is quantifying avoided impacts. In this study, we show how probabilistic counterfactual analysis can help with performance evaluation. We borrow insights from the disaster risk mitigation and climate event attribution literature to illustrate a counterfactual framework and provide examples using ensemble wildfire simulations. Specifically, we reanalyze previously published fire simulation data from fire-prone landscapes…
Publication Type: Journal Article
An aridity threshold model of fire sizes and annual area burned in extensively forested ecoregions of the western USA
Year: 2023
Wildfire occurrence varies among regions and through time due to the long-term impacts of climate on fuel structure and short-term impacts on fuel flammability. Identifying the climatic conditions that trigger extensive fire years at regional scales can enable development of area burned models that are both spatially and temporally robust, which is crucial for understanding the impacts of past and future climate change. We identified region-specific thresholds in fire-season aridity that distinguish years with limited, moderate, and extensive area burned for 11 extensively forested ecoregions…
Publication Type: Journal Article
Long-term mortality burden trends attributed to black carbon and PM2·5 from wildfire emissions across the continental USA from 2000 to 2020: a deep learning modelling study
Year: 2023
Background
Long-term improvements in air quality and public health in the continental USA were disrupted over the past decade by increased fire emissions that potentially offset the decrease in anthropogenic emissions. This study aims to estimate trends in black carbon and PM2·5 concentrations and their attributable mortality burden across the USA.
Methods
In this study, we derived daily concentrations of PM2·5 and its highly toxic black carbon component at a 1-km resolution in the USA from 2000 to 2020 via deep learning that integrated big data from satellites, models, and surface…
Publication Type: Journal Article
Exploring and Testing Wildfire Risk Decision-Making in the Face of Deep Uncertainty
Year: 2023
We integrated a mechanistic wildfire simulation system with an agent-based landscape change model to investigate the feedbacks among climate change, population growth, development, landowner decision-making, vegetative succession, and wildfire. Our goal was to develop an adaptable simulation platform for anticipating risk-mitigation tradeoffs in a fire-prone wildland–urban interface (WUI) facing conditions outside the bounds of experience. We describe how five social and ecological system (SES) submodels interact over time and space to generate highly variable alternative futures even within…
Publication Type: Journal Article
Afternoon Rain More Likely Over Drier Soils
Year: 2012
Land surface properties, such as vegetation cover and soil moisture, influence the partitioning of radiative energy between latent and sensible heat fluxes in daytime hours. During dry periods, soil-water deficit can limit evapotranspiration, leading to warmer and drier conditions in the lower atmosphere. Soil moisture can influence the development of convective storms through such modifications of low-level atmospheric temperature and humidity, which in turn feeds back on soil moisture. Yet there is considerable uncertainty in how soil moisture affects convective storms across the world,…
Publication Type: Journal Article
Fourmile Canyon Fire Findings
Year: 2012
The Fourmile Canyon Fire burned in the fall of 2010 in the Rocky Mountain Front Range adjacent to Boulder, Colorado. The fire occurred in steep, rugged terrain, primarily on privately owned mixed ponderosa pine and Douglas-fir forests. The fire started on September 6 when the humidity of the air was very dry (≈ <7%) and the winds were steadily blowing in the range of 15 miles per hour and gusting to over 40 miles per hour. These conditions prevailed for most of the first day when the fire burned approximately 5,700 acres and destroyed 162 homes. Because of the windy conditions, aircraft…
Publication Type: Report
Climate Change and Disruptions to Global Fire Activity
Year: 2012
Future disruptions to fire activity will threaten ecosystems and human well-being throughout the world, yet there are few fire projections at global scales and almost none from a broad range of global climate models (GCMs). Here we integrate global fire datasets and environmental covariates to build spatial statistical models of fire probability at a 0.58 resolution and examine environmental controls on fire activity. Fire models are driven by climate norms from 16 GCMs (A2 emissions scenario) to assess the magnitude and direction of change over two time periods, 2010–2039 and 2070–2099. From…
Publication Type: Journal Article
Climate Change, Forests, Fire, Water, and Fish: Building Resilient Landscapes, Streams, and Managers
Year: 2012
Fire will play an important role in shaping forest and stream ecosystems as the climate changes. Historic observations show increased dryness accompanying more widespread fire and forest die-off. These events punctuate gradual changes to ecosystems and sometimes generate stepwise changes in ecosystems. Climate vulnerability assessments need to account for fire in their calculus. The biophysical template of forest and stream ecosystems determines much of their response to fire. This report describes the framework of how fire and climate change work together to affect forest and fish…
Publication Type: Report
Projecting future distributions of ecosystem climate niches: Uncertainties and management applications
Year: 2012
Projecting future distributions of ecosystems or species climate niches has widely been used to assess the potential impacts of climate change. However, variability in such projections for the future periods, particularly the variability arising from uncertain future climates, remains a critical challenge for incorporating these projections into climate change adaptation strategies. We combined the use of a robust statistical modeling technique with a simple consensus approach consolidating projected outcomes for multiple climate change scenarios, and exemplify how the results could guide…
Publication Type: Journal Article
A Comprehensive Guide to Fuel Management Practices for Dry Mixed Conifer Forests in the Northwestern United States
Year: 2012
This guide describes the benefits, opportunities, and trade-offs concerning fuel treatments in the dry mixed conifer forests of northern California and the Klamath Mountains, Pacific Northwest Interior, northern and central Rocky Mountains, and Utah. Multiple interacting disturbances and diverse physical settings have created a forest mosaic with historically low- to mixed-severity fire regimes. Analysis of forest inventory data found nearly 80 percent of these forests rate hazardous by at least one measure and 20 to 30 percent rate hazardous by multiple measures. Modeled mechanical…
Publication Type: Report
Pattern and process of prescribed fires influence effectiveness at reducing wildfire severity in dry coniferous forests
Year: 2012
We examined the effects of three early season (spring) prescribed fires on burn severity patterns of summer wildfires that occurred 1–3 years post- treatment in a mixed conifer forest in central Idaho. Wildfire and prescribed fire burn severities were estimated as the difference in normalized burn ratio (dNBR) using Landsat imagery. We used GIS derived vegetation, topography, and treatment variables to generate models predicting the wildfire burn severity of 1286–5500 30- m pixels within and around treated areas. We found that wildfire severity was significantly lower in treated areas than in…
Publication Type: Journal Article