Research Database
Displaying 1 - 6 of 6
A roadmap for pyrodiversity science
Year: 2023
Background
Contemporary and projected shifts in global fire regimes highlight the importance of understanding how fire affects ecosystem function and biodiversity across taxa and geographies. Pyrodiversity, or heterogeneity in fire history, is often an important driver of biodiversity, though it has been largely overlooked until relatively recently. In this paper, we synthesise previous research to develop a theoretical framework on pyrodiversity–biodiversity relationships and propose future research and conservation management directions.
Theoretical Framework
Pyrodiversity may affect…
Publication Type: Journal Article
Climate influences on future fire severity: a synthesis of climate-fire interactions and impacts on fire regimes, high-severity fire, and forests in the western United States
Year: 2023
Background
Increases in fire activity and changes in fire regimes have been documented in recent decades across the western United States. Climate change is expected to continue to exacerbate impacts to forested ecosystems by increasing the frequency, size, and severity of wildfires across the western United States (US). Warming temperatures and shifting precipitation patterns are altering western landscapes and making them more susceptible to high-severity fire. Increases in large patches of high-severity fire can result in significant impacts to landscape processes and ecosystem function…
Publication Type: Journal Article
Old reserves and ancient buds fuel regrowth of coast redwood after catastrophic fire
Year: 2023
For long-lived organisms, investment in insurance strategies such as reserve energy storage can enable resilience to resource deficits, stress or catastrophic disturbance. Recent fire in California damaged coast redwood (Sequoia sempervirens) groves, consuming all foliage on some of the tallest and oldest trees on Earth. Burned trees recovered through resprouting from roots, trunk and branches, necessarily supported by nonstructural carbon reserves. Nonstructural carbon reserves can be many years old, but direct use of old carbon has rarely been documented and never in such large, old trees.…
Publication Type: Journal Article
Long-term mortality burden trends attributed to black carbon and PM2·5 from wildfire emissions across the continental USA from 2000 to 2020: a deep learning modelling study
Year: 2023
Background
Long-term improvements in air quality and public health in the continental USA were disrupted over the past decade by increased fire emissions that potentially offset the decrease in anthropogenic emissions. This study aims to estimate trends in black carbon and PM2·5 concentrations and their attributable mortality burden across the USA.
Methods
In this study, we derived daily concentrations of PM2·5 and its highly toxic black carbon component at a 1-km resolution in the USA from 2000 to 2020 via deep learning that integrated big data from satellites, models, and surface…
Publication Type: Journal Article
Terrestrial carbon dynamics in an era of increasing wildfire
Year: 2023
In an increasingly flammable world, wildfire is altering the terrestrial carbon balance. However, the degree to which novel wildfire regimes disrupt biological function remains unclear. Here, we synthesize the current understanding of above- and belowground processes that govern carbon loss and recovery across diverse ecosystems. We find that intensifying wildfire regimes are increasingly exceeding biological thresholds of resilience, causing ecosystems to convert to a lower carbon-carrying capacity. Growing evidence suggests that plants compensate for fire damage by allocating carbon…
Publication Type: Journal Article
Higher burn severity stimulates postfire vegetation and carbon recovery in California
Year: 2023
As the climate continues to warm, the severity of wildfires is increasing. However, the potential impact of higher burn severity on ecosystem resilience and regional carbon balance is still not clear. There are ongoing debates regarding whether increased burn severity stimulates or delays postfire vegetation and carbon recovery. In this study, we utilized remote sensing data to analyze burn severity and vegetation observations, as well as model simulations to assess wildfire carbon emissions and ecosystem carbon fluxes. Our focus was on examining the dynamics of vegetation and carbon flux…
Publication Type: Journal Article