Research Database
Displaying 121 - 140 of 231
Near-future forest vulnerability to drought and fire varies across the western United States
Year: 2019
Recent prolonged droughts and catastrophic wildfires in the western United States have raised concerns about the potential for forest mortality to impact forest structure, forest ecosystem services, and the economic vitality of communities in the coming decades. We used the Community Land Model (CLM) to determine forest vulnerability to mortality from drought and fire by the year 2049. We modified CLM to represent 13 major forest types in the western United States and ran simulations at a 4‐km grid resolution, driven with climate projections from two general circulation models under one…
Publication Type: Journal Article
A System Dynamics Model Examining Alternative Wildfire Response Policies
Year: 2019
In this paper, we develop a systems dynamics model of a coupled human and natural fire-prone system to evaluate changes in wildfire response policy. A primary motivation is exploring the implications of expanding the pace and scale of using wildfires as a forest restoration tool. We implement a model of a forested system composed of multiple successional classes, each with different structural characteristics and propensities for burning at high severity. We then simulate a range of alternative wildfire response policies, which are defined as the combination of a target burn rate (or…
Publication Type: Journal Article
Assessing relative differences in smoke exposure from prescribed, managed, and full suppression wildland fire
Year: 2019
A novel approach is presented to analyze smoke exposure and provide a metric to quantify health-related impacts. Our results support the current understanding that managing low-intensity fire for ecological benefit reduces exposure when compared to a high-intensity full suppression fire in the Sierra Nevada of California. More frequent use of fire provides an opportunity to mitigate smoke exposure for both individual events and future emission scenarios. The differences in relative exposure between high-intensity, low-intensity, and prescribed burn were significant (P value < 0.01).…
Publication Type: Journal Article
Developing an online tool for identifying at-risk populations to wildfire smoke hazards
Year: 2018
Wildfire episodes pose a significant public health threat in the United States. Adverse health impacts associated with wildfires occur near the burn area as well as in places far downwind due to wildfire smoke exposures. Health effects associated with exposure to particulate matter arising from wildfires can range from mild eye and respiratory tract irritation to more serious outcomes such as asthma exacerbation, bronchitis, and decreased lung function. Real-time operational forecasts of wildfire smoke concentrations are available but they are not readily integrated with information on…
Publication Type: Journal Article
A Review of Community Smoke Exposure from Wildfire Compared to Prescribed Fire in the United States
Year: 2018
Prescribed fire, intentionally ignited low-intensity fires, and managed wildfires—wildfires that are allowed to burn for land management benefit—could be used as a land management tool to create forests that are resilient to wildland fire. This could lead to fewer large catastrophic wildfires in the future. However, we must consider the public health impacts of the smoke that is emitted from wildland and prescribed fire. The objective of this synthesis is to examine the differences in ambient community-level exposures to particulate matter (PM2.5) from smoke in the United States in relation…
Publication Type: Journal Article
Forest Service Managers' Perception of Landscapes and Computer Models
Year: 2018
About Go Big or Go Home?: The goals of this research project were to analyze how public land managers and stakeholders in Oregon’s east Cascades can plan and manage at landscape scales using scientific research and participatory simulation modeling (Envision).
Publication Type: Report
The Weather Conditions for Desired Smoke Plumes at a FASMEE Burn Site
Year: 2018
Weather is an important factor that determines smoke development, which is essential information for planning smoke field measurements. This study identifies the synoptic systems that would favor to produce the desired smoke plumes for the Fire and Smoke Model Evaluation Experiment (FASMEE). Daysmoke and PB-Piedmont (PB-P) models are used to simulate smoke plume evolution during the day time and smoke drainage and fog formation during the nighttime for hypothetical prescribed burns on 5–8 February 2011 at the Stewart Army Base in the southeastern United States. Daysmoke simulation is…
Publication Type: Journal Article
Fire and tree death: understanding and improving modeling of fire-induced tree mortality
Year: 2018
Each year wildland fires kill and injure trees on millions of forested hectares globally, affecting plant and animal biodiversity, carbon storage, hydrologic processes, and ecosystem services. The underlying mechanisms of fire-caused tree mortality remain poorly understood, however, limiting the ability to accurately predict mortality and develop robust modeling applications, especially under novel future climates. Virtually all post-fire tree mortality prediction systems are based on the same underlying empirical model described in Ryan and Reinhardt (1988 Can. J. For. Res. 18 1291–7), which…
Publication Type: Journal Article
Tree traits influence response to fire severity in the western Oregon Cascades, USA
Year: 2018
Wildfire is an important disturbance process in western North American conifer forests. To better understand forest response to fire, we used generalized additive models to analyze tree mortality and long-term (1 to 25 years post-fire) radial growth patterns of trees that survived fire across a burn severity gradient in the western Cascades of Oregon. We also used species-specific leaf-area models derived from sapwood estimates to investigate the linkage between photosynthetic capacity and growth response. Larger trees and shade intolerant trees had a higher probability of surviving fire.…
Publication Type: Journal Article
Landscapes 101: Understanding Landscape Approaches to Forest Restoration and Management
Year: 2018
About Go Big or Go Home?: The goals of this research project were to analyze how public land managers and stakeholders in Oregon’s east Cascades can plan and manage at landscape scales using scientific research and participatory simulation modeling (Envision).
Publication Type: Report
Science and Collaborative Processes
Year: 2018
About Go Big or Go Home?: The goals of this research project were to analyze how public land managers and stakeholders in Oregon’s east Cascades can plan and manage at landscape scales using scientific research and participatory simulation modeling (Envision).
Publication Type: Report
NWCG Smoke Management Guide for Prescribed Fire
Year: 2018
The NWCG Smoke Management Guide for Prescribed Fire contains information on prescribed fire smoke management techniques, air quality regulations, smoke monitoring, modeling, communication, public perception of prescribed fire and smoke, climate change, practical meteorological approaches and smoke tools. The primary focus of this document is to serve as the textbook in support of NWCG’s RX-410, Smoke Management Techniques course which is required for the position of Prescribed Fire Burn Boss Type 2 (RXB2) The Guide is useful to all who use prescribed fire, from private land owners to federal…
Publication Type: Report
Advancing the Science of Wildland Fire Dynamics Using Process-Based Models
Year: 2018
As scientists and managers seek to understand fire behavior in conditions that extend beyond the limits of our current empirical models and prior experiences, they will need new tools that foster a more mechanistic understanding of the processes driving fire dynamics and effects. Here we suggest that process-based models are powerful research tools that are useful for investigating a large number of emerging questions in wildland fire sciences. These models can play a particularly important role in advancing our understanding, in part, because they allow their users to evaluate the potential…
Publication Type: Journal Article
Wildland fire smoke and human health
Year: 2018
The natural cycle of landscape fire maintains the ecological health of the land, yet adverse health effects associated with exposure to emissions from wildfire produce public health and clinical challenges. Systematic reviews conclude that a positive association exists between exposure to wildfire smoke or wildfire particulate matter (PM2.5) and all-cause mortality and respiratory morbidity. Respiratory morbidity includes asthma, chronic obstructive pulmonary disease (COPD), bronchitis and pneumonia. The epidemiological data linking wildfire smoke exposure to cardiovascular mortality and…
Publication Type: Journal Article
Using Social Media to Predict Air Pollution during California Wildfires
Year: 2018
Wildfires have significant effects on human populations worldwide. Smoke pollution, in particular, from either prescribed burns or uncontrolled wildfires, can have profound health impacts, such as reducing birth weight in children and aggravating respiratory and cardiovascular conditions. Scarcity in the measurements of particulate matter responsible for these public health issues makes addressing the problem of smoke dispersion challenging, especially when fires occur in remote regions. Previous research has shown that in the case of the 2014 King fire in California, crowdsourced data can be…
Publication Type: Journal Article
Key Findings and Messages from the Go Big or Go Home? Project
Year: 2018
About Go Big or Go Home?: The goals of this research project were to analyze how public land managers and stakeholders in Oregon’s east Cascades can plan and manage at landscape scales using scientific research and participatory simulation modeling (Envision).
Publication Type: Report
Emissions from prescribed burning of timber slash piles in Oregon
Year: 2017
Emissions from burning piles of post-harvest timber slash (Douglas-fir) in Grande Ronde, Oregon were sampled using an instrument platform lofted into the plume using a tether-controlled aerostat or balloon. Emissions of carbon monoxide, carbon dioxide, methane, particulate matter (PM2.5), black carbon, ultraviolet absorbing PM, elemental/organic carbon, filter-based metals, polycyclic aromatic hydrocarbons (PAHs), polychlorinated dibenzodioxins/dibenzofurans (PCDD/PCDF), and volatile organic compounds (VOCs) were sampled to determine emission factors, the amount of pollutant formed per amount…
Publication Type: Journal Article
Spatiotemporal dynamics of simulated wildfire, forest management, and forest succession in central Oregon, USA.
Year: 2017
We use the simulation model Envision to analyze long-term wildfire dynamics and the effects of different fuel management scenarios in central Oregon, USA. We simulated a 50-year future where fuel management activities were increased by doubling and tripling the current area treated while retaining existing treatment strategies in terms of spatial distribution and treatment type. We modeled forest succession using a state-and-transition approach and simulated wildfires based on the contemporary fire regime of the region. We tested for the presence of temporal trends and overall differences in…
Publication Type: Journal Article
Spatially explicit measurements of forest structure and fire behavior following restoration treatments in dry forests
Year: 2017
Restoration treatments in dry forests of the western US often attempt silvicultural practices to restore the historical characteristics of forest structure and fire behavior. However, it is suggested that a reliance on non-spatial metrics of forest stand structure, along with the use of wildland fire behavior models that lack the ability to handle complex structures, may lead to uncharacteristically homogeneous rather than heterogeneous forest structures following restoration. In our study, we used spatially explicit forest inventory data and a physics based fire behavior model to investigate…
Publication Type: Journal Article
Climate, wildfire, and erosion ensemble foretells more sediment in western USA watersheds
Year: 2017
The area burned annually by wildfires is expected to increase worldwide due to climate change. Burned areas increase soil erosion rates within watersheds, which can increase sedimentation in downstream rivers and reservoirs. However, which watersheds will be impacted by future wildfires is largely unknown. Using an ensemble of climate, fire, and erosion models, we show that postfire sedimentation is projected to increase for nearly nine tenths of watersheds by >10% and for more than one third of watersheds by >100% by the 2041 to 2050 decade in the western USA. The projected increases…
Publication Type: Journal Article
Pagination
- First page
- Previous page
- …
- 5
- 6
- 7
- 8
- 9
- …
- Next page
- Last page