Research Database
Displaying 141 - 160 of 197
Progress in wilderness fire science: Embracing complexity
Year: 2016
Wilderness has played an invaluable role in the development of wildland fire science. Since Agee’s review of the subject 15 years ago, tremendous progress has been made in the development of models and data, in understanding the complexity of wildland fire as a landscape process, and in appreciating the social factors that influence the use of wilderness fire. Regardless of all we have learned, though, the reality is that fire remains an extraordinarily complex process with variable effects that create essential heterogeneity in ecosystems. Whereas some may view this variability as a…
Publication Type: Journal Article
Managed wildfire effects on forest resilience and water in the Sierra Nevada
Year: 2016
Fire suppression in many dry forest types has left a legacy of dense, homogeneous forests. Such landscapes have high water demands and fuel loads, and when burned can result in catastrophically large fires. These characteristics are undesirable in the face of projected warming and drying in the western US. Alternative forest and fire treatments based on managed wildfire—a regime in which fires are allowed to burn naturally and only suppressed under defined management conditions—offer a potential strategy to ameliorate the effects of fire suppression. Understanding the long-term effects of…
Publication Type: Journal Article
Assessment of wildland fire impacts on watershed annual water yield: Analytical framework and case studies in the United States
Year: 2016
More than 50% of water supplies in the conterminous United States originate on forestland or rangeland, and are potentially under increasing stress as a result of larger and more severe wildfires. Little is known however about the long-term impacts of fire on annual water yield, and the role of climate variability within this context. We here propose a framework for evaluating wildland fire impacts on streamflow that combines double-mass analysis with new methods (change point analysis, climate elasticity modeling, and process-based modeling) to distinguish between multi-year fire and climate…
Publication Type: Journal Article
Quantifying the influence of previously burned areas on suppression effectiveness and avoided exposure: a case study of the Las Conchas Fire
Year: 2016
We present a case study of the Las Conchas Fire (2011) to explore the role of previously burned areas (wildfires and prescribed fires) on suppression effectiveness and avoided exposure. Methodological innovations include characterisation of the joint dynamics of fire growth and suppression activities, development of a fire line effectiveness framework, and quantification of relative fire line efficiencies inside and outside of previously burned areas. We provide descriptive statistics of several fire line effectiveness metrics. Additionally, we leverage burn probability modelling to examine…
Publication Type: Journal Article
Wildfire risk associated with different vegetation types within and outside wildland-urban interfaces
Year: 2016
Wildland-urban interfaces (WUIs) are areas where urban settlements and wildland vegetation intermingle, making the interaction between human activities and wildlife especially intense. Their relevance is increasing worldwide as they are expanding and are associated with fire risk. The WUI may affect the fire risk associated with the type of vegetation (land cover/land use; LULC), a well-known risk factor, due to differences in the type and intensity of human activities in different LULCs within and outside WUIs. No previous studies analyse this interaction between the effects of the WUI and…
Publication Type: Journal Article
Wildland fire management: insights from a foresight panel
Year: 2015
Wildland fire management faces unprecedented challenges in the 21st century: the increasingly apparent effects of climate change, more people and structures in the wildland-urban interface, growing costs associated with wildfire management, and the rise of high-impact fires, to name a few. Given these significant and growing challenges, conventional fire management approaches are unlikely to be effective in the future. Innovative and forward-looking approaches are needed. This study explored wildland fire management futures by using methods and diverse perspectives from futures research. To…
Publication Type: Report
Put the wet stuff on the hot stuff': The legacy and drivers of conflict surrounding wildfire suppression
Year: 2015
Existing research demonstrates that wildfire events can lead to conflict among local residents and outside professionals involved in wildfire management or suppression. What has been missing in thewildfire literature is a more explicit understanding of the social dynamics that influence such conflict in rural or agricultural communities and their long-term legacy for future wildfire management. Authorsconducted interviews with local residents of a southeastern Washington community in 2012 to better understand conflict surrounding management of the 2006 Columbia Complex Fire. We utilize…
Publication Type: Journal Article
The economic benefit of localised, short-term, wildfire-potential information
Year: 2015
Wildfire-potential information products are designed to support decisions for prefire staging of movable wildfire suppression resources across geographic locations. We quantify the economic value of these information products by defining their value as the difference between two cases of expected fire-suppression expenditures: one in which daily information about spatial variation in wildfire-potential is used to move fire suppression resources throughout the season, and the other case in which daily information is not used and fire-suppression resources are staged in their home locations all…
Publication Type: Journal Article
The cost of climate change: Ecosystem services and wildland fires
Year: 2015
Little research has focused on the economic impact associated with climate-change induced wildland fire on natural ecosystems and the goods and services they provide. We examine changes in wildland fire patterns based on the U.S. Forest Service's MC1 dynamic global vegetation model from 2013 to 2115 under two pre-defined scenarios: a reference (i.e., business-as-usual) and a greenhouse gas mitigation policy scenario. We construct a habitat equivalency model under which fuels management activities, actions commonly undertaken to reduce the frequency and/or severity of wildland fire, are used…
Publication Type: Journal Article
Wildland fire deficit and surplus in the western United States, 1984-2012
Year: 2015
Wildland fire is an important disturbance agent in the western US and globally. However, the natural role of fire has been disrupted in many regions due to the influence of human activities, which have the potential to either exclude or promote fire, resulting in a "fire deficit" or "fire surplus", respectively. In this study, we developed a model of expected area burned for the western US as a function of climate from 1984 to 2012. We then quantified departures from expected area burned to identify geographic regions with fire deficit or surplus. We developed our model of area burned as a…
Publication Type: Journal Article
Principles of effective USA Federal Fire Management Plans
Year: 2015
Federal fire management plans are essential implementation guides for the management of wildland fire on federal lands. Recent changes in federal fire policy implementation guidance and fire science information suggest the need for substantial changes in federal fire management plans of the United States. Federal land management agencies are also undergoing land management planning efforts that will initiate revision of fire management plans across the country. Using the southern Sierra Nevada as a case study, we briefly describe the underlying framework of fire management plans, assess their…
Publication Type: Journal Article
Relations between soil hydraulic properties and burn severity
Year: 2015
Wildfire can affect soil hydraulic properties, often resulting in reduced infiltration. The magnitude of change in infiltration varies depending on the burn severity. Quantitative approaches to link burn severity with changes in infiltration are lacking. This study uses controlled laboratory measurements to determine relations between a remotely sensed burn severity metric (dNBR, change in normalised burn ratio) and soil hydraulic properties (SHPs). SHPs were measured on soil cores collected from an area burned by the 2013 Black Forest fire in Colorado, USA. Six sites with the same soil type…
Publication Type: Journal Article
Wildland Fuel Fundamentals and Applications
Year: 2015
A new era in wildland fuel sciences is now evolving in such a way that fire scientists and managers need a comprehensive understanding of fuels ecology and science to fully understand fire effects and behavior on diverse ecosystem and landscape characteristics. This is a reference book on wildland fuel science; a book that describes fuels and their application in land management. There has never been a comprehensive book on wildland fuels; most wildland fuel information was put into wildland fire science and management books as separate chapters and sections. This book is the first to…
Publication Type: Book
Categorizing the social context of the wildland urban interface: Adaptive capacity for wildfire and community "archetypes"
Year: 2015
Understanding the local context that shapes collective response to wildfire risk continues to be a challenge for scientists and policymakers. This study utilizes and expands on a conceptual approach for understanding adaptive capacity to wildfire in a comparison of 18 past case studies. The intent is to determine whether comparison of local social context and community characteristics across cases can identify community "archetypes" that approach wildfire planning and mitigation in consistently different ways. Identification of community archetypes serves as a potential strategy for…
Publication Type: Journal Article
Western Water Threatened by Wildfire: It's Not Just A Public Lands Issue
Year: 2015
Water is the arid West’s most precious and most vulnerable resource. Western water allows metropolises to bloom in the desert, it fuels America’s largest agricultural economy and it supports a ski industry worth more than $6 billion to state and local economies (Burakowski and Magnusson, 2012). The delivery of clean and abundant water is extremely sensitive to disaster, whether natural or man-made. As years-long drought conditions across the region reinforce, the water quantity and quality in the West is never certain.
Publication Type: Report
Briefing: Climate and Wildfire in Western U.S. Forests
Year: 2014
Wildfire in western U.S. federally managed forests has increased substantially in recent decades, with large (>1000 acre) fires in the decade through 2012 over five times as frequent (450 percent increase) and burned area over ten times as great (930 percent increase) as the 1970s and early 1980s. These changes are closely linked to increased temperatures and a greater frequency and intensity of drought. Projected additional future warming implies that wildfire activity may continue to increase in western forests. However, the interaction of changes in climate, fire and other disturbances…
Publication Type: Conference Proceedings
Correlations between components of the water balance and burned area reveal insights for predicting forest fire area in the southwest United States
Year: 2014
We related measurements of annual burned area in the southwest United States during 1984–2013 to records of climate variability. Within forests, annual burned area correlated at least as strongly with spring–summer vapour pressure deficit (VPD) as with 14 other drought-related metrics, including more complex metrics that explicitly represent fuel moisture. Particularly strong correlations with VPD arise partly because this term dictates the atmospheric moisture demand. Additionally, VPD responds to moisture supply, which is difficult to measure and model regionally due to complex…
Publication Type: Journal Article
Mathematical model and sensor development for measuring energy transfer from wildland fires
Year: 2014
Current practices for measuring high heat flux in scenarios such as wildland forest fires use expensive, thermopile-based sensors, coupled with mathematical models based on a semi-infinite-length scale. Although these sensors are acceptable for experimental testing in laboratories, high error rates or the need for water cooling limits their applications in field experiments. Therefore, a one-dimensional, finite-length scale, transient-heat conduction model was developed and combined with an inexpensive, thermocouple-based rectangular sensor, to create a rapidly deployable, non-cooled sensor…
Publication Type: Journal Article
Severity of an uncharacteristically large wildfire, the Rim Fire, in forests with relatively restored frequent fire regimes
Year: 2014
The 2013 Rim Fire, originating on Forest Service land, burned into old-growth forests within Yosemite National Park with relatively restored frequent-fire regimes (¡Ý2 predominantly low and moderate severity burns within the last 35 years). Forest structure and fuels data were collected in the field 3-4 years before the fire, providing a rare chance to use pre-existing plot data to analyze fire effects. We used regression tree and random forests analysis to examine the influence of forest structure, fuel, fire history, topographic and weather conditions on observed fire severity in the Rim…
Publication Type: Journal Article
Five-year legacy of wildfire and salvage logging impacts on nutrient runoff and aquatic plant, invertebrate, and fish productivity
Year: 2014
Ecohydrological linkages between phosphorus (P) production, stream algae, benthic invertebrate, and fish communities were studied for 4 years after severe wildfire in the Rocky Mountains (Alberta, Canada). Mean concentrations of all forms of P (soluble reactive, total dissolved, particulate, and total) were 2 to 13 times greater in burned and post-fire salvage-logged streams than in unburned streams (p < 0.001). Post-disturbance recovery of P was slow with differences in P-discharge relationships still evident 5 years after the fire (p < 0.001). Coupled P and sediment interactions were…
Publication Type: Journal Article