Research Database
Displaying 61 - 80 of 232
Human driven climate change increased the likelihood of the 2023 record area burned in Canada
Year: 2024
In 2023, wildfires burned 15 million hectares in Canada, more than doubling the previous record. These wildfires caused a record number of evacuations, unprecedented air quality impacts across Canada and the northeastern United States, and substantial strain on fire management resources. Using climate models, we show that human-induced climate change significantly increased the likelihood of area burned at least as large as in 2023 across most of Canada, with more than two-fold increases in the east and southwest. The long fire season was more than five times as likely and the large areas…
Publication Type: Journal Article
Fire-driven animal evolution in the Pyrocene
Year: 2023
Fire regimes are a major agent of evolution in terrestrial animals. Changing fire regimes and the capacity for rapid evolution in wild animal populations suggests the potential for rapid, fire-driven adaptive animal evolution in the Pyrocene. Fire drives multiple modes of evolutionary change, including stabilizing, directional, disruptive, and fluctuating selection, and can strongly influence gene flow and genetic drift. Ongoing and future research in fire-driven animal evolution will benefit from further development of generalizable hypotheses, studies conducted in highly responsive taxa,…
Publication Type: Journal Article
Factors influencing ember accumulation near a building
Year: 2023
Background: Embers, also known as firebrands, are the leading cause of building ignition during wildland–urban fires. This is attributed both to direct ignition of material on, in, or attached to the building, and indirect ignition where they ignite vegetation or other combustible material near the building, which results in a radiant heat and/or direct flame contact exposure that ignites the building. Indirect ignition of a building can occur when embers accumulate on and ignite nearby combustible fuel, resulting in radiant heat or flame constant exposure. Aims/implications: Factors that…
Publication Type: Journal Article
Less fuel for the next fire? Short-interval fire delays forest recovery and interacting drivers amplify effects
Year: 2023
As 21st-century climate and disturbance dynamics depart from historic baselines, ecosystem resilience is uncertain. Multiple drivers are changing simultaneously, and interactions among drivers could amplify ecosystem vulnerability to change. Subalpine forests in Greater Yellowstone (Northern Rocky Mountains, USA) were historically resilient to infrequent (100–300 year), severe fire. We sampled paired short-interval (<30-year) and long-interval (>125-year) post-fire plots most recently burned between 1988 and 2018 to address two questions: (1) How do short-interval fire, climate,…
Publication Type: Journal Article
Connecting dryland fine-fuel assessments to wildfire exposure and natural resource values at risk
Year: 2023
Background Wildland fire in arid and semi-arid (dryland) regions can intensify when climatic, biophysical, and land-use factors increase fuel load and continuity. To inform wildland fire management under these conditions, we developed high-resolution (10-m) estimates of fine fuel across the Altar Valley in southern Arizona, USA, which spans dryland, grass-dominated ecosystems that are administered by multiple land managers and owners. We coupled field measurements at the end of the 2021 growing season with Sentinel-2 satellite imagery and vegetation indices acquired during and after the…
Publication Type: Journal Article
Evidence for multi-decadal fuel buildup in a large California wildfire from smoke radiocarbon measurements
Year: 2023
In recent decades, there has been a significant increase in annual area burned in California's Sierra Nevada mountains. This rise in fire activity has prompted the need to understand how historical forest management practices affect fuel composition and emissions. Here we examined the total carbon (TC) concentration and radiocarbon abundance (Δ14C) of particulate matter (PM) emitted by the KNP Complex Fire, which occurred during California's 2021 wildfire season and affected several groves of giant sequoia trees in the southern Sierra Nevada. During a 26 h sampling period, we measured…
Publication Type: Journal Article
Postglacial vegetation and fire history with a high-resolution analysis of tephra impacts, High Cascade Range, Oregon, USA
Year: 2023
The postglacial history of vegetation, wildfire, and climate in the Cascade Range (Oregon) is only partly understood. This study uses high-resolution macroscopic charcoal and pollen analysis from a 13-m, 14,500 years sediment record from Gold Lake, located in a montane forest, to reconstruct forest vegetation and fire history. The occurrence of three tephra layers, including a 78-cm airfall Mazama tephra, as well as highly laminated segments, allows one to study tephra impacts on vegetation at a fine temporal resolution. From the Late Glacial through the Younger Dryas, pollen spectra vary…
Publication Type: Journal Article
Refuge-yeah or refuge-nah? Predicting locations of forest resistance and recruitment in a fiery world
Year: 2023
Climate warming, land use change, and altered fire regimes are driving ecological transformations that can have critical effects on Earth's biota. Fire refugia—locations that are burned less frequently or severely than their surroundings—may act as sites of relative stability during this period of rapid change by being resistant to fire and supporting post-fire recovery in adjacent areas. Because of their value to forest ecosystem persistence, there is an urgent need to anticipate where refugia are most likely to be found and where they align with environmental conditions that support post-…
Publication Type: Journal Article
The outsized role of California’s largest wildfires in changing forest burn patterns and coarsening ecosystem scale
Year: 2023
Highlights • We evaluated trends for 1,809 fires that burned 1985–2020 across California forests. • Top 1% of fires by size burned 47% of total area burned across the study period. • Top 1% (18 fires) produced 58% of high and 42% of low-moderate severity area. • Top 1% created novel landscape patterns of large burn severity patches. • These large fires create new opportunities for managing forest resilience. Although recent large wildfires in California forests are well publicized in media and scientific literature, their cumulative effects on forest structure and implications for forest…
Publication Type: Journal Article
MCDM-Based Wildfire Risk Assessment: A Case Study on the State of Arizona
Year: 2023
The increasing frequency of wildfires has posed significant challenges to communities worldwide. The effectiveness of all aspects of disaster management depends on a credible estimation of the prevailing risk. Risk, the product of a hazard’s likelihood and its potential consequences, encompasses the probability of hazard occurrence, the exposure of assets to these hazards, existing vulnerabilities that amplify the consequences, and the capacity to manage, mitigate, and recover from their consequences. This paper employs the multiple criteria decision-making (MCDM) framework, which produces…
Publication Type: Journal Article
The century-long shadow of fire exclusion: Historical data reveal early and lasting effects of fire regime change on contemporary forest composition
Year: 2023
Historical logging practices and fire exclusion have reduced the proportion of pine in mixed-conifer forests of the western United States. To better understand pine’s decline, we investigate the impact of historical logging on the tree regeneration layer and subsequent stand development over almost a century of fire exclusion. We use a unique dataset derived from contemporary (∼2016) remeasurement of 440 historical quadrats (∼4m2) in the central Sierra Nevada, California, in which overstory trees, tree regeneration, and microsite conditions were measured and mapped both before and after…
Publication Type: Journal Article
Modification of Soil Hydroscopic and Chemical Properties Caused by Four Recent California, USA Megafires
Year: 2023
While it is well known that wildfires can greatly contribute to soil water repellency by changing soil chemical composition, the mechanisms of these changes are still poorly understood. In the past decade, the number, size, and intensity of wildfires have greatly increased in the western USA. Recent megafires in California (i.e., the Dixie, Beckwourth Complex, Caldor, and Mosquito fires) provided us with an opportunity to characterize pre- and post-fire soils and to study the effects of fires on soil water repellency, soil organic constituents, and connections between the two. Water drop…
Publication Type: Journal Article
High-severity burned area and proportion exceed historic conditions in Sierra Nevada, California, and adjacent ranges
Year: 2023
Although fire is a fundamental ecological process in western North American forests, climate warming and accumulating forest fuels due to fire suppression have led to wildfires that burn at high severity across larger fractions of their footprint than were historically typical. These trends have spiked upwards in recent years and are particularly pronounced in the Sierra Nevada–Southern Cascades ecoregion of California, USA, and neighboring states. We assessed annual area burned (AAB) and percentage of area burned at high and low-to-moderate severity for seven major forest types in this…
Publication Type: Journal Article
A Conceptual Framework for Knowledge Exchange in a Wildland Fire Research and Practice Context
Year: 2023
Wildland fire is an important natural disturbance in many vegetated areas of the world. However, fire management actions are critical not only to prevent and suppress unwanted fires, but also mitigate and recover from the negative impacts of fire on people and communities. Advancements in wildland fire science can help inform these necessary actions in wildland fire management. How science is created and integrated into these fire management decision-making processes, whether through collaborations with external researchers and/or with scientists within a wildland fire management agency…
Publication Type: Journal Article
The eco-evolutionary role of fire in shaping terrestrial ecosystems
Year: 2023
1. Fire is an inherently evolutionary process, even though much more emphasis has been given to ecological responses of plants and their associated communities to fire. 2. Here, we synthesize contributions to a Special Feature entitled ‘Fire as a dynamic ecological and evolutionary force’ and place them in a broader context of fire research. Topics covered in this Special Feature include a perspective on the im-pacts of novel fire regimes on differential forest mortality, discussions on new ap-proaches to investigate vegetation-fire feedbacks and resulting plant syndromes,…
Publication Type: Journal Article
Consistent spatial scaling of high-severity wildfire can inform expected future patterns of burn severity
Year: 2023
Increasing wildfire activity in forests worldwide has driven urgency in understanding current and future fire regimes. Spatial patterns of area burned at high severity strongly shape forest resilience and constitute a key dimension of fire regimes, yet remain difficult to predict. To characterize the range of burn severity patterns expected within contemporary fire regimes, we quantified scaling relationships relating fire size to patterns of burn severity. Using 1615 fires occurring across the Northwest United States between 1985 and 2020, we evaluated scaling relationships within fire…
Publication Type: Journal Article
Measuring the long-term costs of uncharacteristic wildfire: a case study of the 2010 Schultz Fire in Northern Arizona
Year: 2023
Background
Wildfires often have long-lasting costs that are difficult to document and are rarely captured in full.
Aims
We provide an example for measuring the full costs of a single wildfire over time, using a case study from the 2010 Schultz Fire near Flagstaff, Arizona, to enhance our understanding of the long-term costs of uncharacteristic wildfire.
Methods
We conducted a partial remeasurement of a 2013 study on the costs of the Schultz Fire by updating government and utility expenditures, conducting a survey of affected homeowners, estimating costs to ecosystem services and…
Publication Type: Journal Article
Exceptional variability in historical fire regimes across a western Cascades landscape, Oregon, USA
Year: 2023
Detailed information about the historical range of variability in wildfire activity informs adaptation to future climate and disturbance regimes. Here, we describe one of the first annually resolved reconstructions of historical (1500–1900 ce) fire occurrence in coast Douglas-fir dominated forests of the west slope of the Cascade Range in western Oregon. Mean fire return intervals (MFRIs) across 16 sites within our study area ranged from 6 to 165 years. Variability in MFRIs was strongly associated with average maximum summer vapor pressure deficit. Fire occurred infrequently in Douglas-fir…
Fire Effects and Fire Ecology, Fire History, Mixed-Conifer Management, Restoration and Hazardous Fuel Reduction
Publication Type: Journal Article
Drivers of California’s changing wildfires: a state-of-the-knowledge synthesis
Year: 2023
Over the past four decades, annual area burned has increased significantly in California and across the western USA. This trend reflects a confluence of intersecting factors that affect wildfire regimes. It is correlated with increasing temperatures and atmospheric vapour pressure deficit. Anthropogenic climate change is the driver behind much of this change, in addition to influencing other climate-related factors, such as compression of the winter wet season. These climatic trends and associated increases in fire activity are projected to continue into the future. Additionally, factors…
Publication Type: Journal Article
Widespread exposure to altered fire regimes under 2 °C warming is projected to transform conifer forests of the Western United States
Year: 2023
Changes in wildfire frequency and severity are altering conifer forests and pose threats to biodiversity and natural climate solutions. Where and when feedbacks between vegetation and fire could mediate forest transformation are unresolved. Here, for the western United States, we used climate analogs to measure exposure to fire-regime change; quantified the direction and spatial distribution of changes in burn severity; and intersected exposure with fire-resistance trait data. We measured exposure as multivariate dissimilarities between contemporary distributions of fire frequency, burn…
Publication Type: Journal Article
Pagination
- First page
- Previous page
- …
- 2
- 3
- 4
- 5
- 6
- …
- Next page
- Last page