Research Database
Displaying 221 - 240 of 300
A review of the challenges and opportunities in estimating above ground forest biomass using tree-level models
Year: 2015
Accurate biomass measurements and analyses are critical components in quantifying carbon stocks and sequestration rates, assessing potential impacts due to climate change, locating bio-energy processing plants, and mapping and planning fuel treatments. To this end, biomass equations will remain a key component of future carbon measurements and estimation. As researchers in biomass and carbon estimation, we review the present scenario of aboveground biomass estimation, focusing particularly on estimation using tree-level models and identify some cautionary points that we believe will improve…
Publication Type: Journal Article
Modeling spatial and temporal dynamics of wind flow and potential fire behavior following a mountain pine beetle outbreak in a lodgepole pine forest
Year: 2015
Patches of live, dead, and dying trees resulting from bark beetle-caused mortality alter spatial and temporal variability in the canopy and surface fuel complex through changes in the foliar moisture content of attacked trees and through the redistribution of canopy fuels. The resulting heterogeneous fuels complexes alter within-canopy wind flow, wind fluctuations, and rate of fire spread. However, there is currently little information about the potential influence of different rates and patterns of mortality on wind flow and fire behavior following bark beetle outbreaks. In this study, we…
Publication Type: Journal Article
Put the wet stuff on the hot stuff': The legacy and drivers of conflict surrounding wildfire suppression
Year: 2015
Existing research demonstrates that wildfire events can lead to conflict among local residents and outside professionals involved in wildfire management or suppression. What has been missing in thewildfire literature is a more explicit understanding of the social dynamics that influence such conflict in rural or agricultural communities and their long-term legacy for future wildfire management. Authorsconducted interviews with local residents of a southeastern Washington community in 2012 to better understand conflict surrounding management of the 2006 Columbia Complex Fire. We utilize…
Publication Type: Journal Article
The economic benefit of localised, short-term, wildfire-potential information
Year: 2015
Wildfire-potential information products are designed to support decisions for prefire staging of movable wildfire suppression resources across geographic locations. We quantify the economic value of these information products by defining their value as the difference between two cases of expected fire-suppression expenditures: one in which daily information about spatial variation in wildfire-potential is used to move fire suppression resources throughout the season, and the other case in which daily information is not used and fire-suppression resources are staged in their home locations all…
Publication Type: Journal Article
Projected major fire and vegetation changes in the Pacific Northwest of the conterminous United States under selected CMIP5 climate futures
Year: 2015
Climate change adaptation and mitigation require understanding of vegetation response to climate change. Using the MC2 dynamic global vegetation model (DGVM) we simulate vegetation for the Northwest United States using results from 20 different Climate Model Intercomparison Project Phase 5 (CMIP5) models downscaled using the MACA algorithm. Results were generated for representative concentration pathways (RCPs) 4.5 and 8.5 under vegetation modeling scenarios with and without fire suppression for a total of 80 model runs for future projections. For analysis, results were aggregated by three…
Publication Type: Journal Article
The cost of climate change: Ecosystem services and wildland fires
Year: 2015
Little research has focused on the economic impact associated with climate-change induced wildland fire on natural ecosystems and the goods and services they provide. We examine changes in wildland fire patterns based on the U.S. Forest Service's MC1 dynamic global vegetation model from 2013 to 2115 under two pre-defined scenarios: a reference (i.e., business-as-usual) and a greenhouse gas mitigation policy scenario. We construct a habitat equivalency model under which fuels management activities, actions commonly undertaken to reduce the frequency and/or severity of wildland fire, are used…
Publication Type: Journal Article
Wildland fire deficit and surplus in the western United States, 1984-2012
Year: 2015
Wildland fire is an important disturbance agent in the western US and globally. However, the natural role of fire has been disrupted in many regions due to the influence of human activities, which have the potential to either exclude or promote fire, resulting in a "fire deficit" or "fire surplus", respectively. In this study, we developed a model of expected area burned for the western US as a function of climate from 1984 to 2012. We then quantified departures from expected area burned to identify geographic regions with fire deficit or surplus. We developed our model of area burned as a…
Publication Type: Journal Article
Principles of effective USA Federal Fire Management Plans
Year: 2015
Federal fire management plans are essential implementation guides for the management of wildland fire on federal lands. Recent changes in federal fire policy implementation guidance and fire science information suggest the need for substantial changes in federal fire management plans of the United States. Federal land management agencies are also undergoing land management planning efforts that will initiate revision of fire management plans across the country. Using the southern Sierra Nevada as a case study, we briefly describe the underlying framework of fire management plans, assess their…
Publication Type: Journal Article
Representing climate, disturbance, and vegetation interactions in landscape models
Year: 2015
The prospect of rapidly changing climates over the next century calls for methods to predict their effects on myriad, interactive ecosystem processes. Spatially explicit models that simulate ecosystem dynamics at fine (plant, stand) to coarse (regional, global) scales are indispensable tools for meeting this challenge under a variety of possible futures. A special class of these models, called landscape models (LMs), simulates dynamics at intermediate scales where many critical ecosystem processes interact. The complicated dependencies among climate, disturbance, and vegetation present a…
Publication Type: Journal Article
Taming the Software Chaos: True to its Promise, IFTDSS Eases the Burden of Fuels Treatment Planning - and Does a Lot More Besides
Year: 2014
A key problem reported by the fuels treatment planning community is the difficulty and inefficiency of evaluating and then applying many planning tools and applications. Fuels specialists have struggled to find, load, and learn all the different fuels and fire planning models, not to mention the interface of running, adjusting, and inputting data specific to each model without the ability to easily share inputs/outputs between models. The Interagency Fuels Treatment Decision Support System (IFTDSS) was conceived as a way for users to learn one interface, access a variety of data and models…
Publication Type: Report
Wildland fire emissions, carbon, and climate: Modeling fuel consumption
Year: 2014
Fuel consumption specifies the amount of vegetative biomass consumed during wildland fire. It is a two-stage process of pyrolysis and combustion that occurs simultaneously and at different rates depending on the characteristics and condition of the fuel, weather, topography, and in the case of prescribed fire, ignition rate and pattern. Fuel consumption is the basic process that leads to heat absorbing emissions called greenhouse gas and other aerosol emissions that can impact atmospheric and ecosystem processes, carbon stocks, and land surface reflectance. It is a critical requirement for…
Publication Type: Journal Article
Modeling Regional-Scale Wildland Fire Emissions with the Wildland Fire Emissions Information System
Year: 2014
As carbon modeling tools become more comprehensive, spatial data are needed to improve quantitative maps of carbon emissions from fire.The Wildland Fire Emissions Information System (WFEIS) provides mapped estimates of carbon emissions from historical forest fires in the United States through a web browser. WFEIS improves access to data and provides a consistent approach to estimating emissions at landscape, regional, and continental scales. The system taps into data and tools developed by the U.S. Forest Serviceto describe fuels, fuel loadings, and fuel consumption and merges information…
Publication Type: Journal Article
Wildland firefighter safety zones: a review of past science and summary of future needs
Year: 2014
Current wildland firefighter safety zone guidelines are based on studies that assume flat terrain, radiant heating, finite flame width, constant flame temperature and high flame emissivity. Firefighter entrapments and injuries occur across a broad range of vegetation, terrain and atmospheric conditions generally when they are within two flame heights of the fire. Injury is not confined to radiant heating or flat terrain; consequently, convective heating should be considered as a potential heating mode. Current understanding of energy transport in wildland fires is briefly summarised, followed…
Publication Type: Journal Article
The Effectiveness and Limitations of Fuel Modeling Using the Fire and Fuels Extension to the Forest Vegetation Simulator
Year: 2014
Fuel treatment effectiveness is often evaluated with fire behavior modeling systems that use fuel models to generate fire behavior outputs. How surface fuels are assigned, either using one of the 53 stylized fuel models or developing custom fuel models, can affect predicted fire behavior. We collected surface and canopy fuels data before and 1, 2, 5, and 8 years after prescribed fire treatments across 10 national forests in California. Two new methods of assigning fuel models within the Fire and FuelsExtension to the Forest Vegetation Simulator were evaluated. Field-based values for dead and…
Publication Type: Journal Article
The role of defensible space for residential structure protection during wildfires
Year: 2014
With the potential for worsening fire conditions, discussion is escalating over how to best reduce effects on urban communities. A widely supported strategy is the creation of defensible space immediately surrounding homes and other structures. Although state and local governments publish specific guidelines and requirements, there is little empirical evidence to suggest how much vegetation modification is needed to provide significant benefits. We analysed the role of defensible space by mapping and measuring a suite of variables on modern pre-fire aerial photography for 1000 destroyed and…
Publication Type: Journal Article
Mapping the daily progression of large wildland fires using MODIS active fire data
Year: 2014
High temporal resolution information on burnt area is needed to improve fire behaviour and emissions models. We used the Moderate Resolution Imaging Spectroradiometer (MODIS) thermal anomaly and active fire product (MO(Y)D14) as input to a kriging interpolation to derive continuous maps of the timing of burnt area for 16 large wildland fires. For each fire, parameters for the kriging model were defined using variogram analysis. The optimal number of observations used to estimate a pixel’s time of burning varied between four and six among the fires studied. The median standard error from…
Publication Type: Journal Article
Briefing: Climate and Wildfire in Western U.S. Forests
Year: 2014
Wildfire in western U.S. federally managed forests has increased substantially in recent decades, with large (>1000 acre) fires in the decade through 2012 over five times as frequent (450 percent increase) and burned area over ten times as great (930 percent increase) as the 1970s and early 1980s. These changes are closely linked to increased temperatures and a greater frequency and intensity of drought. Projected additional future warming implies that wildfire activity may continue to increase in western forests. However, the interaction of changes in climate, fire and other disturbances…
Publication Type: Conference Proceedings
Integrating Social, Economic, and Ecological Values Across Large Landscapes
Year: 2014
The Integrated Landscape Assessment Project (ILAP) was a multiyear effort to produce information, maps, and models to help land managers, policymakers, and others conduct mid- to broad-scale (e.g., watersheds to states and larger areas) prioritization of land management actions, perform landscape assessments, and estimate cumulative effects of management actions for planning and other purposes. The ILAP provided complete cross-ownership geospatial data and maps on current vegetation, potential vegetation, land ownership and management allocation classes, and other landscape attributes across…
Publication Type: Report
Correlations between components of the water balance and burned area reveal insights for predicting forest fire area in the southwest United States
Year: 2014
We related measurements of annual burned area in the southwest United States during 1984–2013 to records of climate variability. Within forests, annual burned area correlated at least as strongly with spring–summer vapour pressure deficit (VPD) as with 14 other drought-related metrics, including more complex metrics that explicitly represent fuel moisture. Particularly strong correlations with VPD arise partly because this term dictates the atmospheric moisture demand. Additionally, VPD responds to moisture supply, which is difficult to measure and model regionally due to complex…
Publication Type: Journal Article
Mathematical model and sensor development for measuring energy transfer from wildland fires
Year: 2014
Current practices for measuring high heat flux in scenarios such as wildland forest fires use expensive, thermopile-based sensors, coupled with mathematical models based on a semi-infinite-length scale. Although these sensors are acceptable for experimental testing in laboratories, high error rates or the need for water cooling limits their applications in field experiments. Therefore, a one-dimensional, finite-length scale, transient-heat conduction model was developed and combined with an inexpensive, thermocouple-based rectangular sensor, to create a rapidly deployable, non-cooled sensor…
Publication Type: Journal Article
Pagination
- First page
- Previous page
- …
- 10
- 11
- 12
- 13
- 14
- …
- Next page
- Last page