Research Database
Displaying 21 - 40 of 207
Canadian forests are more conducive to high-severity fires in recent decades
Year: 2025
Canada has experienced more-intense and longer fire seasons with more-frequent uncontrollable wildfires over the past decades. However, the effect of these changes remains unknown. This study identifies driving forces of burn severity and estimates its spatiotemporal variations in Canadian forests. Our results show that fuel aridity was the most influential driver of burn severity, summer months were more prone to severe burning, and the northern areas were most influenced by the changing climate. About 6% (0.54 to 14.64%) of the modeled areas show significant increases in the number of days…
Publication Type: Journal Article
Ecological scenarios: Embracing ecological uncertainty in an era of global change
Year: 2025
Scenarios, or plausible characterizations of the future, can help natural resource stewards plan and act under uncertainty. Current methods for developing scenarios for climate change adaptation planning are often focused on exploring uncertainties in future climate, but new approaches are needed to better represent uncertainties in ecological responses. Scenarios that characterize how ecological changes may unfold in response to climate and describe divergent and surprising ecological outcomes can help natural resource stewards recognize signs of nascent ecological transformation and…
Publication Type: Journal Article
Wildland Firefighters Suffer Increasing Risk of Job-Related Death
Year: 2025
Wildland firefighting is a niche specialization in the fire service - inherently dangerous with unique risks. Over the past decade, fatalities amongst all firefighters have decreased; however, wildland firefighter fatalities have increased. This subject has only been described in the grey literature, and a paucity of medical literature exists. The United States Fire Administration's online fatality database was queried for on duty mortality between 1990 and 2022. The year 2001 was excluded due to the 340 deaths that occurred on September 11th. Data collected included demographics, incident…
Publication Type: Journal Article
Multifactor Change in Western U.S. Nighttime Fire Weather
Year: 2025
Reports from western U.S. firefighters that nighttime fire activity has been increasing during the spans of many of their careers have recently been confirmed by satellite measurements over the 2003–20 period. The hypothesis that increasing nighttime fire activity has been caused by increased nighttime vapor pressure deficit (VPD) is consistent with recent documentation of positive, 40-yr trends in nighttime VPD over the western United States. However, other meteorological conditions such as near-surface wind speed and planetary boundary layer depth also impact fire behavior and exhibit…
Publication Type: Journal Article
Compounding effects of climate change and WUI expansion quadruple the likelihood of extreme-impact wildfires in California
Year: 2025
Previous research has examined individual factors contributing to wildfire risk, but the compounding effects of these factors remain underexplored. Here, we introduce the “Integrated Human-centric Wildfire Risk Index (IHWRI)” to quantify the compounding effects of fire-weather intensification and anthropogenic factors—including ignitions and human settlement into wildland—on wildfire risk. While climatic trends increased the frequency of high-risk fire-weather by 2.5-fold, the combination of this trend with wildland-urban interface expansion led to a 4.1-fold increase in the frequency of…
Publication Type: Journal Article
Compounding effects of climate change and WUI expansion quadruple the likelihood of extreme-impact wildfires in California
Year: 2025
Previous research has examined individual factors contributing to wildfire risk, but the compounding effects of these factors remain underexplored. Here, we introduce the “Integrated Human-centric Wildfire Risk Index (IHWRI)” to quantify the compounding effects of fire-weather intensification and anthropogenic factors—including ignitions and human settlement into wildland—on wildfire risk. While climatic trends increased the frequency of high-risk fire-weather by 2.5-fold, the combination of this trend with wildland-urban interface expansion led to a 4.1-fold increase in the frequency of…
Publication Type: Journal Article
Human driven climate change increased the likelihood of the 2023 record area burned in Canada
Year: 2024
In 2023, wildfires burned 15 million hectares in Canada, more than doubling the previous record. These wildfires caused a record number of evacuations, unprecedented air quality impacts across Canada and the northeastern United States, and substantial strain on fire management resources. Using climate models, we show that human-induced climate change significantly increased the likelihood of area burned at least as large as in 2023 across most of Canada, with more than two-fold increases in the east and southwest. The long fire season was more than five times as likely and the large areas…
Publication Type: Journal Article
Comparing ground-based lightning detection networks near wildfire points-of-origin
Year: 2024
Lightning detection and attribution to wildfire ignitions is a critical component of fire management worldwide to both reduce hazards of wildfire to values-at-risk and to enhance the potential for wildland fire to provide resource benefits in fire-adapted ecosystems. We compared two operational ground-based lightning detection networks used by fire managers to identify cloud-to-ground strokes within operationally-relevant distances (1.6 km) of the origins of 4408 western United States lightning-ignited wildfires spanning May–September 2020. Applying two sets of constraints–varying…
Publication Type: Journal Article
Biogeographic patterns of daily wildfire spread and extremes across North America
Year: 2024
Introduction: Climate change is predicted to increase the frequency of extreme single-day fire spread events, with major ecological and social implications. In contrast with well-documented spatio-temporal patterns of wildfire ignitions and perimeters, daily progression remains poorly understood across continental spatial scales, particularly for extreme single-day events (“blow ups”). Here, we characterize daily wildfire spread across North America, including occurrence of extreme single-day events, duration and seasonality of fire and extremes, and ecoregional climatic…
Publication Type: Journal Article
Exploring the use of satellite Earth observation active wildland fire hotspot data via open access web platforms
Year: 2024
Globally, managing wildland fire is increasing in complexity. Satellite Earth Observation (EO) data, specifically active fire ‘hotspot’ data, is often used to inform wildland fire management. This study explores hotspot data usage via web traffic data (‘user counts’) for the FIRMS, GWIS and EFFIS web portals between September 2019 and April 2023. Global active fire data use is characterized by multi-month periods of relatively low, stable user counts, interspersed with periodic spikes (4.1x median monthly activity) of activity broadly aligned with the North American / European fire season (…
Publication Type: Journal Article
Evaluating driving behavior patterns during wildfire evacuations in wildland-urban interface zones using connected vehicles data
Year: 2024
Wildfire risk is increasing all over the world, particularly in the western United States and the communities in wildland-urban interface (WUI) areas are at the greatest risk of fire. Understanding the driving behavior of individuals to evacuate fire-affected WUI areas is important as the evacuees may encounter low visibility and difficult driving conditions due to burning material and steep topography. This study investigates the driving behavior patterns of individuals during historical wildfire events in rural and urban areas with mandatory evacuation orders using a connected vehicle…
Publication Type: Journal Article
Rare and highly destructive wildfires drive human migration in the U.S.
Year: 2024
The scale of wildfire impacts to the built environment is growing and will likely continue under rising average global temperatures. We investigate whether and at what destruction threshold wildfires have influenced human mobility patterns by examining the migration effects of the most destructive wildfires in the contiguous U.S. between 1999 and 2020. We find that only the most extreme wildfires (258+ structures destroyed) influenced migration patterns. In contrast, the majority of wildfires examined were less destructive and did not cause significant changes to out- or in-migration. These…
Economic Impacts of Fire, Public Perceptions of Fire and Smoke, Social and Community Impacts of Fire
Publication Type: Journal Article
Evidence for Wildland Fire Smoke Transport of Microbes From Terrestrial Sources to the Atmosphere and Back
Year: 2024
Smoke from wildland fires contains more diverse, viable microbes than typical ambient air, yet little is known about the sources and sinks of smoke-borne microorganisms. Data from molecular-based surveys suggest that smoke-borne microorganisms originate from material associated with the vegetation and underlying soils that becomes aerosolized during combustion, however, the sources of microbes in smoke have not yet been experimentally assessed. To elucidate this link, we studied high-intensity forest fires in the Fishlake National Forest, Utah, USA and applied source-sink modeling to…
Publication Type: Journal Article
Molecular shifts in dissolved organic matter along a burn severity continuum for common land cover types in the Pacific Northwest, USA
Year: 2024
Increasing wildfire severity is of growing concern in the western United States, with consequences for the production, composition, and mobilization of dissolved organic matter (DOM) from terrestrial to aquatic systems. Our current understanding of wildfire impacted DOM (often termed pyrogenic DOM) composition is largely built from temperature-based studies that can be difficult to extrapolate to field conditions, which are often defined by ‘burn severity’, or the post-wildfire impact observed at a site. Thus, burn severity can encapsulate a broader range of fire and environmental conditions…
Publication Type: Journal Article
Carbon emissions from the 2023 Canadian wildfires
Year: 2024
The 2023 Canadian forest fires have been extreme in scale and intensity with more than seven times the average annual area burned compared to the previous four decades. Here, we quantify the carbon emissions from these fires from May to September 2023 on the basis of inverse modelling of satellite carbon monoxide observations. We find that the magnitude of the carbon emissions is 647 TgC (570–727 TgC), comparable to the annual fossil fuel emissions of large nations, with only India, China and the USA releasing more carbon per year. We find that widespread hot–dry weather was a principal…
Publication Type: Journal Article
Pathways for sustainable coexistence with wildfires
Year: 2024
Sustainable coexistence with wildfire requires overcoming vicious cycles that trap socio-ecological systems in maladaptive states. A carefully coordinated programme of innovation, education and governance, the ‘wildfire adaptation triad’, is essential for escaping maladaptation across national, community and individual scales.
Publication Type: Journal Article
Fuel types misrepresent forest structure and composition in interior British Columbia: a way forward
Year: 2024
A clear understanding of the connectivity, structure, and composition of wildland fuels is essential for effective wildfire management. However, fuel typing and mapping are challenging owing to a broad diversity of fuel conditions and their spatial and temporal heterogeneity. In Canada, fuel types and potential fire behavior are characterized using the Fire Behavior Prediction (FBP) System, which uses an association approach to categorize vegetation into 16 fuel types based on stand structure and composition. In British Columbia (BC), provincial and national FBP System fuel type maps are…
Publication Type: Journal Article
From flexibility to feasibility: identifying the policy conditions that support the management of wildfire for objectives other than full suppression
Year: 2024
Background. Intentional management of naturally ignited wildfires has emerged as a valuable tool for addressing the social and ecological consequences of a century of fire exclusion in policy and practice. Policy in the United States now allows wildfires to be managed for suppression and other than full suppression (OTFS) objectives simultaneously, giving flexibility to local decision makers. Aims. To extend existing research on the history of wildfire management, investigate how wildfire professionals interpret current policy with respect to OTFS management, and better understand how they…
Publication Type: Journal Article
Application of the wildland fire emissions inventory system to estimate fire emissions on forest lands of the United States
Year: 2024
BackgroundForests are significant terrestrial biomes for carbon storage, and annual carbon accumulation of forest biomass contributes offsets affecting net greenhouse gases in the atmosphere. The immediate loss of stored carbon through fire on forest lands reduces the annual offsets provided by forests. As such, the United States reporting includes annual estimates of direct fire emissions in conjunction with the overall forest stock and change estimates as a part of national greenhouse gas inventories within the United Nations Framework Convention on Climate Change. Forest fire emissions…
Publication Type: Journal Article
Road fragment edges enhance wildfire incidence and intensity, while suppressing global burned area
Year: 2024
Landscape fragmentation is statistically correlated with both increases and decreases in wildfire burned area (BA). These different directions-of-impact are not mechanistically understood. Here, road density, a land fragmentation proxy, is implemented in a CMIP6 coupled land-fire model, to represent fragmentation edge effects on fire-relevant environmental variables. Fragmentation caused modelled BA changes of over ±10% in 16% of [0.5°] grid-cells. On average, more fragmentation decreased net BA globally (−1.5%), as estimated empirically. However, in recently-deforested tropical areas,…
Publication Type: Journal Article