Research Database
Displaying 1 - 20 of 23
Forecasting natural regeneration of sagebrush after wildfires using population models and spatial matching
Year: 2023
Context Addressing ecosystem degradation in the Anthropocene will require ecological restoration across large spatial extents. Identifying areas where natural regeneration will occur without direct resource investment will improve scalability of restoration actions. Objectives An ecoregion in need of large scale restoration is the Great Basin of the Western US, where increasingly large and frequent wildfires threaten ecosystem integrity and its foundational shrub species. We develop a framework to forecast where post-wildfire regeneration of sagebrush cover (Artemisia spp.) is likely to occur…
Publication Type: Journal Article
Using soil moisture information to better understand and predict wildfire danger: a review of recent developments and outstanding questions
Year: 2023
Soil moisture conditions are represented in fire danger rating systems mainly through simple drought indices based on meteorological variables, even though better sources of soil moisture information are increasingly available. This review summarises a growing body of evidence indicating that greater use of in situ, remotely sensed, and modelled soil moisture information in fire danger rating systems could lead to better estimates of dynamic live and dead herbaceous fuel loads, more accurate live and dead fuel moisture predictions, earlier warning of wildfire danger, and better forecasts of…
Publication Type: Journal Article
An aridity threshold model of fire sizes and annual area burned in extensively forested ecoregions of the western USA
Year: 2023
Wildfire occurrence varies among regions and through time due to the long-term impacts of climate on fuel structure and short-term impacts on fuel flammability. Identifying the climatic conditions that trigger extensive fire years at regional scales can enable development of area burned models that are both spatially and temporally robust, which is crucial for understanding the impacts of past and future climate change. We identified region-specific thresholds in fire-season aridity that distinguish years with limited, moderate, and extensive area burned for 11 extensively forested ecoregions…
Publication Type: Journal Article
Projecting live fuel moisture content via deep learning
Year: 2023
Background: Live fuel moisture content (LFMC) is a key environmental indicator used to monitor for high wildfire risk conditions. Many statistical models have been proposed to predict LFMC from remotely sensed data; however, almost all these estimate current LFMC (nowcasting models). Accurate modelling of LFMC in advance (projection models) would provide wildfire managers with more timely information for assessing and preparing for wildfire risk. Aims: The aim of this study was to investigate the potential for deep learning models to predict LFMC across the continental United States 3 months…
Publication Type: Journal Article
A comparison of smoke modelling tools used to mitigate air quality impacts from prescribed burning
Year: 2023
Background. Prescribed fire is a land management tool used extensively across the United States. Owing to health and safety risks, smoke emitted by burns requires appropriate manage- ment. Smoke modelling tools are often used to mitigate air pollution impacts. However, direct comparisons of tools’ predictions are lacking. Aims. We compared three tools commonly used to plan prescribed burning projects: the Simple Smoke Screening Tool, VSmoke and HYSPLIT. Methods. We used each tool to model smoke dispersion from prescribed burns conducted by the North Carolina Division of Parks and Recreation…
Publication Type: Journal Article
DUET - Distribution of Understory using Elliptical Transport: A mechanistic model of leaf litter and herbaceous spatial distribution based on tree canopy structure
Year: 2023
Heterogeneity in surface fuels produced by overstory trees and understory vegetation is a major driver of fire behavior and ecosystem dynamics. Previous attempts at predicting tree leaf and needle litter accumulation over time have been constrained in scope to probabilistic models that consider a limited number of key factors influencing tree litter dispersal patterns and decomposition processes. We present a mechanistic model for estimating variation in surface fuels called the Distribution of Understory using Elliptical Transport (DUET). DUET uses a pre-generated voxelated canopy array and…
Publication Type: Journal Article
Factors influencing flood risk mitigation after wildfire: Insights for individual and collective action after the 2010 Schultz Fire
Year: 2023
Post-fire flooding is of significant concern in the U.S. Southwest, where burned areas can drastically alter local hydrology to increase the risk of floods and debris flows, posing new and dynamic flood risk to communities downslope that necessitate coordinated response across jurisdictional boundaries. However, limited research explores how residents in affected communities respond to post-fire flood risk, both individually and collectively. We address this need by exploring factors that may influence the uptake of individual and collective actions for post-fire flood mitigation after an…
Publication Type: Journal Article
Exploring and Testing Wildfire Risk Decision-Making in the Face of Deep Uncertainty
Year: 2023
We integrated a mechanistic wildfire simulation system with an agent-based landscape change model to investigate the feedbacks among climate change, population growth, development, landowner decision-making, vegetative succession, and wildfire. Our goal was to develop an adaptable simulation platform for anticipating risk-mitigation tradeoffs in a fire-prone wildland–urban interface (WUI) facing conditions outside the bounds of experience. We describe how five social and ecological system (SES) submodels interact over time and space to generate highly variable alternative futures even within…
Publication Type: Journal Article
Measuring the long-term costs of uncharacteristic wildfire: a case study of the 2010 Schultz Fire in Northern Arizona
Year: 2023
Background
Wildfires often have long-lasting costs that are difficult to document and are rarely captured in full.
Aims
We provide an example for measuring the full costs of a single wildfire over time, using a case study from the 2010 Schultz Fire near Flagstaff, Arizona, to enhance our understanding of the long-term costs of uncharacteristic wildfire.
Methods
We conducted a partial remeasurement of a 2013 study on the costs of the Schultz Fire by updating government and utility expenditures, conducting a survey of affected homeowners, estimating costs to ecosystem services and…
Publication Type: Journal Article
Avoided wildfire impact modeling with counterfactual probabilistic analysis
Year: 2023
Assessing the effectiveness and measuring the performance of fuel treatments and other wildfire risk mitigation efforts are challenging endeavors. Perhaps the most complicated is quantifying avoided impacts. In this study, we show how probabilistic counterfactual analysis can help with performance evaluation. We borrow insights from the disaster risk mitigation and climate event attribution literature to illustrate a counterfactual framework and provide examples using ensemble wildfire simulations. Specifically, we reanalyze previously published fire simulation data from fire-prone landscapes…
Publication Type: Journal Article
Optimizing the implementation of a forest fuel break network
Year: 2023
Methods and models to design, prioritize and evaluate fuel break networks have potential application in many fire-prone ecosystems where major increases in fuel management investments are planned in response to growing incidence of wildfires. A key question facing managers is how to scale treatments into manageable project areas that meet operational and administrative constraints, and then prioritize their implementation over time to maximize fire management outcomes. We developed and tested a spatial modeling system to optimize the implementation of a proposed 3,538 km fuel break network…
Economic Impacts of Fire, Fuels and Fuel Treatments, Risk Assessment and Analysis, Social and Community Impacts of Fire
Publication Type: Journal Article
Modeling Wildland Firefighters’ Assessments of Structure Defensibility
Year: 2023
In wildland–urban interface areas, firefighters balance wildfire suppression and structure protection. These tasks are often performed under resource limitations, especially when many structures are at risk. To address this problem, wildland firefighters employ a process called “structure triage” to prioritize structure protection based on perceived defensibility. Using a dataset containing triage assessments of thousands of structures within the Western US, we developed a machine learning model that can improve the understanding of factors contributing to assessed structure defensibility.…
Publication Type: Journal Article
Performance of Fire Danger Indices and Their Utility in Predicting Future Wildfire Danger Over the Conterminous United States
Year: 2023
Predicting current and future wildfire frequency and size is central to wildfire control and management. Multiple fire danger indices (FDIs) that incorporate weather and fuel conditions have been developed and utilized to support wildfire predictions and risk assessment. However, the scale-dependent performance of individual FDIs remains poorly understood, which leads to large uncertainty in the estimated fire sizes under climate change. Here, we calculate four commonly used FDIs over the conterminous United States using high-resolution (4 km) climate and fuel data sets for the 1984–2019…
Publication Type: Journal Article
Long-term mortality burden trends attributed to black carbon and PM2·5 from wildfire emissions across the continental USA from 2000 to 2020: a deep learning modelling study
Year: 2023
Background
Long-term improvements in air quality and public health in the continental USA were disrupted over the past decade by increased fire emissions that potentially offset the decrease in anthropogenic emissions. This study aims to estimate trends in black carbon and PM2·5 concentrations and their attributable mortality burden across the USA.
Methods
In this study, we derived daily concentrations of PM2·5 and its highly toxic black carbon component at a 1-km resolution in the USA from 2000 to 2020 via deep learning that integrated big data from satellites, models, and surface…
Publication Type: Journal Article
Fire refugia are robust across Western US forested ecoregions, 1986–2021
Year: 2023
In the Western US, area burned and fire size have increased due to the influences of climate change, long-term fire suppression leading to higher fuel loads, and increased ignitions. However, evidence is less conclusive about increases in fire severity within these growing wildfire extents. Fires burn unevenly across landscapes, leaving islands of unburned or less impacted areas, known as fire refugia. Fire refugia may enhance post-fire ecosystem function and biodiversity by providing refuge to species and functioning as seed sources after fires. In this study, we evaluated whether the…
Publication Type: Journal Article
Satellite-derived prefire vegetation predicts variation in field-based invasive annual grass cover after fir
Year: 2023
AimsInvasion by annual grasses (IAGs) and concomitant increases in wildfire are impacting many drylands globally, and an understanding of factors that contribute to or detract from community resistance to IAGs is needed to inform postfire restoration interventions. Prefire vegetation condition is often unknown in rangelands but it likely affects variation in postfire invasion resistance across large burned scars. Whether satellite-derived products like the Rangeland Analysis Platform (RAP) can fulfill prefire information needs and be used to parametrize models of fire recovery to inform…
Publication Type: Journal Article
Higher burn severity stimulates postfire vegetation and carbon recovery in California
Year: 2023
As the climate continues to warm, the severity of wildfires is increasing. However, the potential impact of higher burn severity on ecosystem resilience and regional carbon balance is still not clear. There are ongoing debates regarding whether increased burn severity stimulates or delays postfire vegetation and carbon recovery. In this study, we utilized remote sensing data to analyze burn severity and vegetation observations, as well as model simulations to assess wildfire carbon emissions and ecosystem carbon fluxes. Our focus was on examining the dynamics of vegetation and carbon flux…
Publication Type: Journal Article
Incorporating pyrodiversity into wildlife habitat assessments for rapid post-fire management: A woodpecker case study
Year: 2023
Spatial and temporal variation in fire characteristics—termed pyrodiversity—areincreasingly recognized as important factors that structure wildlife communitiesin fire-prone ecosystems, yet there have been few attempts to incorporatepyrodiversity or post-fire habitat dynamics into predictive models of animaldistributionsandabundancetosupportpost-firemanagement.Weusetheblack-backed woodpecker—a species associated with burned forests—as a case study todemonstrate a pathway for incorporating pyrodiversity into wildlife habitatassessments for adaptive management. Employing monitoring data (2009–…
Publication Type: Journal Article
Atmospheric turbulence and wildland fires: a review
Year: 2023
The behaviour of wildland fires and the dispersion of smoke from those fires can be strongly influenced by atmospheric turbulent flow. The science to support that assertion has developed and evolved over the past 100+ years, with contributions from laboratory and field observations, as well as modelling experiments. This paper provides a synthesis of the key laboratory- and field-based observational studies focused on wildland fire and atmospheric turbulence connections that have been conducted from the early 1900s through 2021. Included in the synthesis are reports of anecdotal…
Publication Type: Journal Article
Creating Fire-Adapted Communities Through Recovery: Case Studies from the United States and Australia
Year: 2023
Wildfires can be devastating for social and ecological systems, but the recovery period after wildfire presents opportunities to reduce future risk through adaptation. We use a collective case study approach to systematically compare social and ecological recovery following four major fire events in Australia and the United States: the 1998 wildfires in northeastern Florida; the 2003 Cedar fire in southern California; the 2009 Black Saturday bushfires in Victoria, southeastern Australia; and the 2011 Bastrop fires in Texas. Fires spurred similar policy changes, with an emphasis on education,…
Publication Type: Journal Article