Research Database
Displaying 1 - 5 of 5
Future climate risks from stress, insects and fire across US forests
Year: 2022
Forests are currently a substantial carbon sink globally. Many climate change mitigation strategies leverage forest preservation and expansion, but rely on forests storing carbon for decades to centuries. Yet climate-driven disturbances pose critical risks to the long-term stability of forest carbon. We quantify the climate drivers that influence wildfire and climate stress-driven tree mortality, including a separate insect-driven tree mortality, for the contiguous United States for current (1984–2018) and project these future disturbance risks over the 21st century. We find that current…
Publication Type: Journal Article
Frequency of disturbance mitigates high-severity fire in the Lake Tahoe Basin, California and Nevada
Year: 2022
Because of past land use changes and changing climate, forests are moving outside of their historical range of variation. As fires become more severe, forest managers are searching for strategies that can restore forest health and reduce fire risk. However, management activities are only one part of a suite of disturbance vectors that shape forest conditions. To account for the range of disturbance intensities and disturbance types (wildfire, bark beetles, and management), we developed a disturbance return interval (DRI) that represents the average return period for any disturbance, human or…
Publication Type: Journal Article
Pyrogenic carbon decomposition critical to resolving fire’s role in the Earth system
Year: 2022
Recently identified post-fire carbon fluxes indicate that, to understand whether global fires represent a net carbon source or sink, one must consider both terrestrial carbon retention through pyrogenic carbon production and carbon losses via multiple pathways. Here these legacy source and sink pathways are quantified using a CMIP6 land surface model to estimate Earth’s fire carbon budget. Over the period 1901–2010, global pyrogenic carbon has driven an annual soil carbon accumulation of 337 TgC yr−1, offset by legacy carbon losses totalling −248 TgC yr−1. The residual of these values…
Publication Type: Journal Article
Mapping the daily progression of large wildland fires using MODIS active fire data
Year: 2014
High temporal resolution information on burnt area is needed to improve fire behaviour and emissions models. We used the Moderate Resolution Imaging Spectroradiometer (MODIS) thermal anomaly and active fire product (MO(Y)D14) as input to a kriging interpolation to derive continuous maps of the timing of burnt area for 16 large wildland fires. For each fire, parameters for the kriging model were defined using variogram analysis. The optimal number of observations used to estimate a pixel’s time of burning varied between four and six among the fires studied. The median standard error from…
Publication Type: Journal Article
Wildland fire emissions, carbon, and climate: Modeling fuel consumption
Year: 2014
Fuel consumption specifies the amount of vegetative biomass consumed during wildland fire. It is a two-stage process of pyrolysis and combustion that occurs simultaneously and at different rates depending on the characteristics and condition of the fuel, weather, topography, and in the case of prescribed fire, ignition rate and pattern. Fuel consumption is the basic process that leads to heat absorbing emissions called greenhouse gas and other aerosol emissions that can impact atmospheric and ecosystem processes, carbon stocks, and land surface reflectance. It is a critical requirement for…
Publication Type: Journal Article