Research Database
Displaying 121 - 137 of 137
Forest Protection and Forest Harvest as Strategies for Ecological Sustainability and Climate Change Mitigation
Year: 2012
An important consideration in forest management to mitigate climate change is the balance between forest carbon (C) storage and ecological sustainability. We explore the effects of management strategies on tradeoffs between forest C stocks and ecological sustainability under five scenarios, three of which included management and two scenarios which provide baselines emulating the natural forest. Managed forest scenarios were: (a) Protection (PROT), i.e., management by suppression of natural disturbance and harvest exclusion; (b) Harvest at a higher rate removing all sustainably available wood…
Publication Type: Journal Article
Estimating Consumption and Remaining Carbon in Burned Slash Piles
Year: 2012
Fuel reduction treatments to reduce fire risk have become commonplace in the fire adapted forests of western North America. These treatments generate significant woody debris, or slash, and burning this material in piles is a common and inexpensive approach to reducing fuel loads. Although slash pile burning is a common practice, there is little information on consumption or even a common methodology for estimating consumption. As considerations of carbon storage and emissions from forests increase, better means of quantifying burn piles are necessary. This study uses two methods, sector…
Publication Type: Journal Article
Carbon Outcomes from Fuels Treatment and Bioenergy Production in a Sierra Nevada Forest
Year: 2012
In temperate conifer forests of the Western USA, there is active debate whether fuels reduction treatments and bioenergy production result in decreased carbon emissions and increased carbon sequestration compared to a no-action alternative. To address this debate over net carbon stocks, we performed a carbon life-cycle analysis on data from a fuels reduction treatment in a temperate, dry conifer forest in the northern Sierra Nevada of California, USA. The analysis tracks the net ecosystem carbon balance over 50 years for two scenarios (1) fuels reduction treatment combined with bioenergy…
Publication Type: Journal Article
Changes to Dryland Rainfall Result in Rapid Moss Mortality and Altered Soil Fertility
Year: 2012
Arid and semi-arid ecosystems cover ~40% of Earth's terrestrial surface, but we know little about how climate change will affect these widespread landscapes. Like many drylands, the Colorado Plateau in southwestern United States is predicted to experience elevated temperatures and alterations to the timing and amount of annual precipitation. We used a factorial warming and supplemental rainfall experiment on the Colorado Plateau to show that altered precipitation resulted in pronounced mortality of the widespread moss Syntrichia caninervis. Increased frequency of 1.2mm summer rainfall events…
Publication Type: Journal Article
Changes in Soil Chemical and Biological Properties After Thinning and Prescribed Fire for Ecosystem Restoration in a Rocky Mountain Douglas Fir Forest
Year: 2012
Practices such as thinning followed by prescribed burning, often termed ‘ecosystem restoration practices’, are being used in Rocky Mountain forests to prevent uncontrolled wildfire and restore forests to pre-settlement conditions. Prior to burning, surface fuels may be left or collected into piles, which may affect fire temperatures and attendant effects on the underlying soil. The objective of this study is to determine which pre-fire fuel management treatments best reduce fuel loadings without causing fire temperatures high enough to impair soil chemical and biological properties. Five fuel…
Publication Type: Journal Article
Reducing hazardous fuels on nonindustrial private forests: factors influencing landowner decisions
Year: 2011
In mixed-ownership landscapes, fuels conditions on private lands have implications for fire risk on public lands and vice versa. The success of efforts to mitigate fire risk depends on the extent, efficacy, and coordination of treatments on nearby ownerships. Understanding factors in forest owners’ decisions to address the risk of wildland fire is therefore important. This research uses logistic regression to analyze mail survey data and identify factors in forest owners’ decisions to reduce hazardous fuels in the ponderosa pine (Pinus ponderosa) ecosystem on the east side of Oregon. Results…
Publication Type: Journal Article
Advancing effects analysis for integrated, large-scale wildfire risk assessment
Year: 2011
In this article, we describe the design and development of a quantitative, geospatial risk assessment tool intended to facilitate monitoring trends in wildfire risk over time and to provide information useful in prioritizing fuels treatments and mitigation measures. The research effort is designed to develop, from a strategic view, a first approximation of how both fire likelihood and intensity influence risk to social, economic, and ecological values at regional and national scales. Three main components are required to generate wildfire risk outputs: (1) burn probability maps generated from…
Publication Type: Journal Article
Short- and Long-term Effects of Fire on Carbon in US Dry Temperate Forest Systems
Year: 2011
Forests sequester carbon from the atmosphere, and in so doing can mitigate the effects of climate change. Fire is a natural disturbance process in many forest systems that releases carbon back to the atmosphere. In dry temperate forests, fires historically burned with greater frequency and lower severity than they do today. Frequent fires consumed fuels on the forest floor and maintained open stand structures. Fire suppression has resulted in increased understory fuel loads and tree density; a change in structure that has caused a shift from low- to high-severity fires. More severe fires,…
Publication Type: Journal Article
Evaluating Soil Risks Associated With Severe Wildfire and Ground-Based Logging
Year: 2011
Rehabilitation and timber-salvage activities after wildfire require rapid planning and rational decisions. Identifying areas with high risk for erosion and soil productivity losses is important. Moreover, allocation of corrective and mitigative efforts must be rational and prioritized. Our logic-based analysis of forested soil polygons on the Okanogan-Wenatchee National Forest was designed and implemented with the Ecosystem Management Decision Support (EMDS) system to evaluate risks to soil properties and productivity associated with moderate to severe wildfire and unmitigated use of ground-…
Publication Type: Report
Fuelwood Characteristics of Northwestern Conifers and Hardwoods (Updated)
Year: 2010
This report is an update of the original publication by Oregon State University in 1987 (Resource Bulletin 60). According to agreements, researchers at the U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station and the Juneau Economic Development Council worked with Oregon State University to update this reference concerning wood energy properties. The fuelwood characteristics were reformatted and presented in tabular form, and a literature review was conducted to check for additional information published since 1987. This report provides fuelwood values for 34…
Publication Type: Report
Wildfire Risk Management on a Landscape with Public and Private Ownership: Who Pays for Protection?
Year: 2010
Wildfire, like many natural hazards, affects large landscapes with many landowners and the risk individual owners face depends on both individual and collective protective actions. In this study, we develop a spatially explicit game theoretic model to examine the strategic interaction between landowners’ hazard mitigation decisions on a landscape with public and private ownership. We find that in areas where ownership is mixed, the private landowner performs too little fuel treatment as they ‘‘free ride’’—capture benefits without incurring the costs—on public protection, while areas with…
Publication Type: Journal Article
Introducing FuelCalc: A New Tool that Helps Turn Static Inventory Data into Actionable Information
Year: 2010
Fuel and fire managers perform fuel treatments to manage and restore ecosystems and protect resources. In order to plan effective fuel treatments that accomplish objectives, managers need to analyze fuel conditions and document the expected fire behavior and fire effects both before and after fuel treatment. To help accomplish these goals, a new software tool named FuelCalc was created. FuelCalc facilitates use of a wide range of inventory data and fuel characteristics to help calculate fuel quantities and qualities to estimate potential fire behavior, fire effects, and smoke production. By…
Publication Type: Report
The Forest, the Fire and the Fungi: Studying the Effects of Prescribed Burning on Mycorrhizal Fungi in Crater Lake National Park
Year: 2009
A first-of-its-kind study, conducted in a forest of old-growth ponderosa pine and white fir in Oregon’s Crater Lake National Park, explored the relationships among seasonal prescribed burning, an array of soil attributes, and mycorrhizal fungal fruiting patterns. This three-fold approach not only made the study unique, but also enabled researchers to separate the effects of fire treatment from the effects of soil attributes on fungal fruiting patterns. The study’s site encompassed three different prescribed burn treatments—applied in the early spring, late spring, and fall of 2002—as well as…
Publication Type: Report
Has Fire Suppression Increased the Amount of Carbon Stored in Western US Forests?
Year: 2008
Active 20th century fire suppression in western US forests, and a resulting increase in stem density, is thought to account for a significant fraction of the NorthAmerican carbon sink. We compared California forest inventories from the 1930s with inventories from the 1990s to quantify changes in aboveground biomass. Stem density in mid-montane conifer forests increased by 34%, while live aboveground carbon stocks decreased by 26%. Increased stem density reflected an increase in the number of small trees and a net loss of large trees. Large trees contain a disproportionate amount of carbon,…
Publication Type: Journal Article
Four centuries of soil carbon and nitrogen change after stand-replacing fire in a forest landscape in the western Cascade range of Oregon
Year: 2008
Episodic stand-replacing wildfire is a significant disturbance in mesic and moist Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) forests of the Pacific Northwest. We studied 24 forest stands with known fire histories in the western Cascade Range in Oregon to evaluate long-term impacts of stand-replacing wildfire on carbon (C) and nitrogen (N) pools and dynamics within the forest floor (FF, Oe and Oa horizons) and the mineral soil (0–10 cm). Twelve of our stands burned approximately 150 years ago (“young”), and the other 12 burned approximately 550 years ago (“old”). Forest floor mean C…
Publication Type: Journal Article
Forest structure and fire hazard in dry forests of the Western United States
Year: 2005
Fire, in conjunction with landforms and climate, shapes the structure and function of forests throughout the Western United States, where millions of acres of forest lands contain accumulations of flammable fuel that are much higher than historical conditions owing to various forms of fire exclusion. The Healthy Forests Restoration Act mandates that public land managers assertively address this situation through active management of fuel and vegetation. This document synthesizes the relevant scientific knowledge that can assist fuel-treatment projects on national forests and other public…
Publication Type: Report
Do wood-boring beetles influence the flammability of deadwood?
Year:
Global warming increases the risk of wildfire and insect outbreaks, potentially reducing the carbon storage function of coarse woody debris (CWD). There is an increasing focus on the interactive effects of wildfire and insect infestation on forest carbon, but the impact of wood-boring beetle tunnels via their effect on the flammability of deadwood remains unexplored. We hypothesized that the presence of beetle holes, at natural densities, can affect its flammability positively through increased surface area and enhanced oxygen availability in the wood. To test this, wood-boring beetle holes…
Publication Type: Journal Article
Pagination
- First page
- Previous page
- …
- 3
- 4
- 5
- 6
- 7