Research Database
Displaying 21 - 40 of 158
Garden design can reduce wildfire risk and drive more sustainable co-existence with wildfire
Year: 2024
Destructive wildfire disasters are escalating globally, challenging existing fire management paradigms. The establishment of defensible space around homes in wildland and rural urban interfaces can help to reduce the risk of house loss and provide a safe area for residents and firefighters to defend the property from wildfire. Although defensible space is a well-established concept in fire management, it has received surprisingly limited scientific discussion. Here we reviewed guidelines on the creation of defensible space from Africa, Europe, North America, South America, and Oceania. We…
Publication Type: Journal Article
The Distribution of Tree Biomass Carbon within the Pacific Coastal Temperate Rainforest, a Disproportionally Carbon Dense Forest
Year: 2024
Spatially explicit global estimates of forest carbon storage are typically coarsely scaled. While useful, these estimates do not account for the variability and distribution of carbon at management scales. We asked how climate, topography, and disturbance regimes interact across and within geopolitical boundaries to influence tree biomass carbon, using the perhumid region of the Pacific Coastal Temperate Rainforest, an infrequently disturbed carbon dense landscape, as a test case. We leveraged permanent sample plots in southeast Alaska and coastal British Columbia and used multiple quantile…
Publication Type: Journal Article
Carbon, climate, and natural disturbance: a review of mechanisms, challenges, and tools for understanding forest carbon stability in an uncertain future
Year: 2024
In this review, we discuss current research on forest carbon risk from natural disturbance under climate change for the United States, with emphasis on advancements in analytical mapping and modeling tools that have potential to drive research for managing future long-term stability of forest carbon. As a natural mechanism for carbon storage, forests are a critical component of meeting climate mitigation strategies designed to combat anthropogenic emissions. Forests consist of long-lived organisms (trees) that can store carbon for centuries or more. However, trees have finite lifespans, and…
Publication Type: Journal Article
The geography of social vulnerability and wildfire occurrence (1984–2018) in the conterminous USA
Year: 2024
Wildfire is increasing in frequency, extent, and severity in many parts of the USA. Considering the unequal burden of natural hazards on socially vulnerable populations, we ask here, how are characteristics of social vulnerability associated with wildfire occurrence nationwide, at different scales and across differing levels of wildland–urban interface development? To answer this question, we first identify all non-urban census tracts in the USA that have experienced a wildfire since 1984. Using 26 different measures of social vulnerability, we compare these tracts to non-urban census tracts…
Publication Type: Journal Article
Enhanced future vegetation growth with elevated carbon dioxide concentrations could increase fire activity
Year: 2024
Many regions of the planet have experienced an increase in fire activity in recent decades. Although such increases are consistent with warming and drying under continued climate change, the driving mechanisms remain uncertain. Here, we investigate the effects of increasing atmospheric carbon dioxide concentrations on future fire activity using seven Earth system models. Centered on the time of carbon dioxide doubling, the multi-model mean percent change in fire carbon emissions is 66.4 ± 38.8% (versus 1850 carbon dioxide concentrations, under fixed 1850 land-use conditions). A substantial…
Publication Type: Journal Article
Role of biochar made from low-value woody forest residues in ecological sustainability and carbon neutrality
Year: 2024
Forest management activities that are intended to improve forest health and reduce the risk of catastrophic fire generate low-value woody biomass, which is often piled and open-burned for disposal. This leads to greenhouse gas emissions, long-lasting burn scars, air pollution, and increased risk of escaped prescribed fire. Converting low-value biomass into biochar can be a promising avenue for advancing forest sustainability and carbon neutrality. Biochar can be produced either in a centralized facility or by using place-based techniques that mitigate greenhouse gas emissions and generate a…
Publication Type: Journal
Evaluating driving behavior patterns during wildfire evacuations in wildland-urban interface zones using connected vehicles data
Year: 2024
Wildfire risk is increasing all over the world, particularly in the western United States and the communities in wildland-urban interface (WUI) areas are at the greatest risk of fire. Understanding the driving behavior of individuals to evacuate fire-affected WUI areas is important as the evacuees may encounter low visibility and difficult driving conditions due to burning material and steep topography. This study investigates the driving behavior patterns of individuals during historical wildfire events in rural and urban areas with mandatory evacuation orders using a connected vehicle…
Publication Type: Journal Article
Terrestrial carbon dynamics in an era of increasing wildfire
Year: 2023
In an increasingly flammable world, wildfire is altering the terrestrial carbon balance. However, the degree to which novel wildfire regimes disrupt biological function remains unclear. Here, we synthesize the current understanding of above- and belowground processes that govern carbon loss and recovery across diverse ecosystems. We find that intensifying wildfire regimes are increasingly exceeding biological thresholds of resilience, causing ecosystems to convert to a lower carbon-carrying capacity. Growing evidence suggests that plants compensate for fire damage by allocating carbon…
Publication Type: Journal Article
Factors influencing ember accumulation near a building
Year: 2023
Background: Embers, also known as firebrands, are the leading cause of building ignition during wildland–urban fires. This is attributed both to direct ignition of material on, in, or attached to the building, and indirect ignition where they ignite vegetation or other combustible material near the building, which results in a radiant heat and/or direct flame contact exposure that ignites the building. Indirect ignition of a building can occur when embers accumulate on and ignite nearby combustible fuel, resulting in radiant heat or flame constant exposure. Aims/implications: Factors that…
Publication Type: Journal Article
Unprotected lands: A case study of a wildland-urban interface community in “No-Man's land”
Year: 2023
There are areas of the United States that have no formalized fire protection. These lands are colloquially referred to as “no-man’s land” but are recognized by many land management agencies as unprotected lands. Unprotected lands are generally rural landscapes and exist in areas that are sparsely populated and lack formalized fire protection. In some cases, lands that are designated as wildland-urban interface are comprised of significant portions of unprotected lands. Currently, there has been little in the way of research completed that pertains to the overall amount of land that is…
Publication Type: Journal Article
Evaluating driving behavior patterns during wildfire evacuations in wildland-urban interface zones using connected vehicles data
Year: 2023
Wildfire risk is increasing all over the world, particularly in the western United States and the communities in wildland-urban interface (WUI) areas are at the greatest risk of fire. Understanding the driving behavior of individuals to evacuate fire-affected WUI areas is important as the evacuees may encounter low visibility and difficult driving conditions due to burning material and steep topography. This study investigates the driving behavior patterns of individuals during historical wildfire events in rural and urban areas with mandatory evacuation orders using a connected vehicle…
Publication Type: Journal Article
Face-to-face with scorching wildfire: potential toxicant exposure and the health risks of smoke for wildland firefighters at the wildland-urban interface
Year: 2023
As wildfire risks have elevated due to climate change, the health risks that toxicants from fire smoke pose to wildland firefighters have been exacerbated. Recently, the International Agency for Research on Cancer (IARC) has reclassified wildland firefighters’ occupational exposure as carcinogenic to humans (Group 1). Wildfire smoke contributes to an increased risk of cancer and cardiovascular disease, yet wildland firefighters have inadequate respiratory protection. The economic cost of wildland fires has risen concurrently, as illustrated by the appropriation of $45 billion for wildfire…
Publication Type: Journal Article
Identifying building locations in the wildland–urban interface before and after fires with convolutional neural networks
Year: 2023
Background: Wildland–urban interface (WUI) maps identify areas with wildfire risk, but they are often outdated owing to the lack of building data. Convolutional neural networks (CNNs) can extract building locations from remote sensing data, but their accuracy in WUI areas is unknown. Additionally, CNNs are computationally intensive and technically complex, making them challenging for end-users, such as those who use or create WUI maps, to apply.Aims: We identified buildings pre- and post-wildfire and estimated building destruction for three…
Publication Type: Journal Article
Long-term mortality burden trends attributed to black carbon and PM2·5 from wildfire emissions across the continental USA from 2000 to 2020: a deep learning modelling study
Year: 2023
Background
Long-term improvements in air quality and public health in the continental USA were disrupted over the past decade by increased fire emissions that potentially offset the decrease in anthropogenic emissions. This study aims to estimate trends in black carbon and PM2·5 concentrations and their attributable mortality burden across the USA.
Methods
In this study, we derived daily concentrations of PM2·5 and its highly toxic black carbon component at a 1-km resolution in the USA from 2000 to 2020 via deep learning that integrated big data from satellites, models, and surface…
Publication Type: Journal Article
Changes in wildfire occurrence and risk to homes from 1990 through 2019 in the Southern Rocky Mountains, USA
Year: 2023
Wildfires and housing development have increased since the 1990s, presenting unique challenges for wildfire management. However, it is unclear how the relative influences of housing growth and changing wildfire occurrence have altered risk to homes, or the potential for wildfire to threaten homes. We used a random forests model to predict burn probability in relation to weather variables at 1-km resolution and monthly intervals from 1990 through 2019 in the Southern Rocky Mountains ecoregion. We quantified risk by combining the predicted burn probabilities with decadal housing density. We…
Publication Type: Journal Article
The Fire Adapted Communities Pathways Tool: Facilitating Social Learning and a Science of Practice
Year: 2023
Wildfire science, policy, and practice lack systematic means for “tailoring” fire adaptation practices to socially diverse human populations and in ways that aggregate existing lessons. This article outlines the development and initial operationalization of the Fire Adapted Communities Pathways Tool, an inductive set of processes that help facilitate dialogue about needs and priorities for wildfire adaptation strategies across ownership boundaries or partners. We outline the stages and considerations organized by the tool, including how its components build from decades of social science and…
Communicating about Fire, Public Perceptions of Fire and Smoke, Social and Community Impacts of Fire
Publication Type: Journal Article
Flammability study of decking sections found at the Wildland–Urban interface at different scales
Year: 2023
This work presents a study of the fire reaction of two types of decking sections (wood and thermoplastic) exposed to a radiant heat source. The flammability was studied at two scales: a cone calorimeter was used at product scale (36 cm2) and at assembly scale (around 1300 cm2), experiments were performed under a Large Scale Heat Release calorimeter with a radiant burner. Since the wood decking sections have gaps, the influence of the orientation of the sections facing the burner was further investigated. At product scale, the wood sections ignite sooner than the thermoplastic sections whereas…
Publication Type: Journal Article
Wildfire risk, salience, and housing development in the wildland–urban interface
Year: 2023
As wildfires increase in both severity and frequency, understanding the role of risk saliency on human behaviors in the face of fire risks becomes paramount. While research has shown that homebuyers capitalize wildfire risk following a fire, studies of the role that risk saliency plays on residential development is limited. This paper aims to fill this gap by studying the link between wildfire risk saliency and the rate of residential development in wildfire-prone areas, by treating recent wildfires as conditionally exogenous shocks to saliency. Using geospatial data on residential…
Publication Type: Journal Article
Old reserves and ancient buds fuel regrowth of coast redwood after catastrophic fire
Year: 2023
For long-lived organisms, investment in insurance strategies such as reserve energy storage can enable resilience to resource deficits, stress or catastrophic disturbance. Recent fire in California damaged coast redwood (Sequoia sempervirens) groves, consuming all foliage on some of the tallest and oldest trees on Earth. Burned trees recovered through resprouting from roots, trunk and branches, necessarily supported by nonstructural carbon reserves. Nonstructural carbon reserves can be many years old, but direct use of old carbon has rarely been documented and never in such large, old trees.…
Publication Type: Journal Article
Exploring and Testing Wildfire Risk Decision-Making in the Face of Deep Uncertainty
Year: 2023
We integrated a mechanistic wildfire simulation system with an agent-based landscape change model to investigate the feedbacks among climate change, population growth, development, landowner decision-making, vegetative succession, and wildfire. Our goal was to develop an adaptable simulation platform for anticipating risk-mitigation tradeoffs in a fire-prone wildland–urban interface (WUI) facing conditions outside the bounds of experience. We describe how five social and ecological system (SES) submodels interact over time and space to generate highly variable alternative futures even within…
Publication Type: Journal Article