Research Database
Displaying 41 - 60 of 128
High-severity wildfire reduces richness and alters composition of ectomycorrhizal fungi in low-severity adapted ponderosa pine forests
Year: 2021
Ponderosa pine (Pinus ponderosa) forests are increasingly experiencing high-severity, stand-replacing fires.Whereas alterations to aboveground ecosystems have been extensively studied, little is known about soil fungal responses in fire-adapted ecosystems. We implement a chronosequence of four different fires that varied in time since fire, 2 years (2015) to 11 years (2006) and contained stands of high severity burned P. ponderosa in easternWashington and compared their soil fungal communities to adjacent unburned plots. Using Illumina Miseq(ITS1), we examined changes in soil nutrients,…
Publication Type: Journal Article
Contrasting the role of human- and lightning-caused wildfires on future fire regimes on a Central Oregon landscape
Year: 2021
Climate change is expected to increase fire activity in many regions of the globe, but the relative role of human vs. lightning-caused ignitions on future fire regimes is unclear. We developed statistical models that account for the spatiotemporal ignition patterns by cause in the eastern slopes of the Cascades in Oregon, USA. Projected changes in energy release component from a suite of climate models were used with our model to quantify changes in frequency and extent of human and lightning-caused fires and record-breaking events based on sizes of individual fires between contemporary (2006…
Publication Type: Journal Article
Repeated fall prescribed fire in previously thinned Pinus ponderosa increases growth and resistance to other disturbances
Year: 2021
In western North America beginning in the late 19th century, fire suppression and other factors resulted in dense ponderosa pine (Pinus ponderosa) forests that are now prone to high severity wildfire, insect attack, and root diseases. Thinning and prescribed fire are commonly used to remove small trees, fire-intolerant tree species, and shrubs, and to reduce surface and aerial fuels. These treatments can be effective at lowering future fire severity, but prescribed burns must be periodically repeated to maintain favorable conditions and are feasible only outside the historical summer wildfire…
Publication Type: Journal Article
Episodic occurrence of favourable weather constrains recovery of a cold desert shrubland after fire
Year: 2021
1. Key to the long-term resilience of dryland ecosystems is the recovery of foundation plant species following disturbance. In ecosystems with high interannual weather variability, understanding the influence of short-term environmental conditions on establishment of foundation species is essential for identifying vulnerable landscapes and developing restoration strategies. We asked how annual environmental conditions affect post-fire establishment of Artemisia tridentata, a shrub species that dominates landscapes across much of the western United States, and evaluated the influence of…
Publication Type: Journal Article
Repeated fall prescribed fire in previously thinned Pinus ponderosa increases growth and resistance to other disturbances
Year: 2021
In western North America beginning in the late 19th century, fire suppression and other factors resulted in denseponderosa pine (Pinus ponderosa) forests that are now prone to high severity wildfire, insect attack, and rootdiseases. Thinning and prescribed fire are commonly used to remove small trees, fire-intolerant tree species, andshrubs, and to reduce surface and aerial fuels. These treatments can be effective at lowering future fire severity,but prescribed burns must be periodically repeated to maintain favorable conditions and are feasible only outsidethe historical summer wildfire…
Publication Type: Journal Article
Existing Improvements in Simulation of Fire–Wind Interaction and Its Effects on Structures
Year: 2021
This work provides a detailed overview of existing investigations into the fire–wind interaction phenomena. Specifically, it considers: the fanning effect of wind, wind direction and slope angle, and the impact of wind on fire modelling, and the relevant analysis (numerical and experimental) techniques are evaluated. Recently, the impact of fire on buildings has been widely analysed. Most studies paid attention to fire damage evaluation of structures as well as structure fire safety engineering, while the disturbance interactions that influence structures have been neglected in prior studies…
Publication Type: Journal Article
Persistent effects of fire severity on ponderosa pine regeneration niches and seedling growth
Year: 2020
Several recent studies have documented how fire severity affects the density and spatial patterns of tree regenerationin western North American ponderosa pine forests. However, less is known about the effects of fireseverity on fine-scale tree regeneration niche attributes such as understory plant composition and cover, surfacefuel abundance, and soil properties, or how these attributes in turn affect regenerating ponderosa pine growth.Using 1-m2 plots centered on 360 ponderosa pine seedlings that regenerated naturally after the Pumpkin Fire in2000 in Arizona, we quantified regeneration niche…
Publication Type: Journal Article
The hot-dry-windy index: A new tool for forecasting fire weather
Year: 2020
Accurate predictions of how weather may affect a wildfire’s behavior are needed to protect crews on the line and efficiently allocate firefighting resources. Since 1988, fire meteorologists have used a tool called the Haines Index to predict days when the weather will exacerbate a wildfire. Although the Haines Index is widely believed to have value, it never received rigorous testing on the line. Even Don Haines, the U.S. Forest Service meteorologist who developed the index, has said the Haines Index needs further refinement. Recognizing that a new fire weather prediction tool was needed, a…
Publication Type: Report
Weather, Risk, and Resource Orders on Large Wildland Fires in the Western US
Year: 2020
Our results suggest that weather is a primary driver of resource orders over the course of extended attack efforts on large fires. Incident Management Teams (IMTs) synthesize information about weather, fuels, and order resources based on expected fire growth rather than simply reacting to observed fire growth. Background and Objectives: Weather conditions are a well-known determinant of fire behavior and are likely to become more erratic under climate change. Yet, there is little empirical evidence demonstrating how IMTs respond to observed or expected weather conditions. An understanding of…
Publication Type: Journal Article
Historical patterns of fire severity and forest structure and composition in a landscape structured by frequent large fires: Pumice Plateau ecoregion, Oregon, USA
Year: 2019
Context Lack of quantitative observations of extent, frequency, and severity of large historical fires constrains awareness of departure of contemporary conditions from those that demonstrated resistance and resilience to frequent fire and recurring drought. Objectives Compare historical and contemporary fire and forest conditions for a dry forest landscape with few barriers to fire spread. Methods Quantify differences in (1) historical (1700–1918) and contemporary (1985–2015) fire extent, fire rotation, and stand-replacing fire and (2) historical (1914–1924) and contemporary (2012) forest…
Publication Type: Journal Article
What drives ponderosa pine regeneration following wildfire in the western United States?
Year: 2019
Ponderosa pine (Pinus ponderosa Lawson & C. Lawson) is a prominent tree species in forests of the western United States. Wildfire activity in ponderosa pine dominated or co-dominated forests has increased dramatically in recent decades, with these recent wildfires often burning in an uncharacteristic manner due to past land management activities and changing climate. The structure and function of vegetative communities that develop following recent wildfires are highly contingent on ponderosa pine regeneration, making it important that the factors influencing this regeneration be…
Publication Type: Journal Article
Predicting post-fire attack of red turpentine or western pine beetle on ponderosa pine and its impact on mortality probability in Pacific Northwest forests
Year: 2019
In ponderosa pine forests of western North America, wildfires are becoming more frequent and affecting larger areas, while prescribed fire is increasingly used to reduce fuels and mitigate potential wildfire severity. Both fire types leave trees that initially survive their burn injuries, but will eventually die. Predicting delayed tree mortality has received considerable research attention to aid in post-fire planning and management. The amount of crown scorched is recognized as the most useful variable for discriminating between trees that live or die, but models gain discrimination with…
Publication Type: Journal Article
Prescribed fire regimes subtly alter ponderosa pine forest plant community structure
Year: 2019
Prescribed fire is an active management tool used to address wildfire hazard and ecological concerns associated with fire exclusion and suppression over the past century. Despite widespread application in the United States, there is considerable inconsistency and lack of information regarding the extent to which specific outcomes are achieved and under what prescribed fire regimes, particularly in regard to ecological goals related to plant community structure. We quantify differences and patterns in plant functional group abundance, species richness and diversity, and other key forest…
Publication Type: Journal Article
Severe Fire Danger Index: A Forecastable Metric to Inform Firefighter and Community Wildfire Risk Management
Year: 2019
Despite major advances in numerical weather prediction, few resources exist to forecast wildland fire danger conditions to support operational fire management decisions and community early-warning systems. Here we present the development and evaluation of a spatial fire danger index that can be used to assess historical events, forecast extreme fire danger, and communicate those conditions to both firefighters and the public. It uses two United States National Fire Danger Rating System indices that are related to fire intensity and spread potential. These indices are normalized, combined, and…
Publication Type: Journal Article
Fire deficits have increased drought‐sensitivity in dry conifer forests; fire frequency and tree‐ring carbon isotope evidence from Central Oregon
Year: 2019
A century of fire suppression across the Western US has led to more crowded forests and increased competition for resources. Studies of forest thinning or stand conditions after mortality events have provided indirect evidence for how competition can promote drought stress and predispose forests to severe fire and/or bark beetle outbreaks. Here we demonstrate linkages between fire deficits and increasing drought stress through analyses of annually resolved tree‐ring growth, fire scars, and carbon isotope discrimination (Δ13C) across a dry mixed‐conifer forest landscape. Fire deficits across…
Publication Type: Journal Article
The Weather Conditions for Desired Smoke Plumes at a FASMEE Burn Site
Year: 2018
Weather is an important factor that determines smoke development, which is essential information for planning smoke field measurements. This study identifies the synoptic systems that would favor to produce the desired smoke plumes for the Fire and Smoke Model Evaluation Experiment (FASMEE). Daysmoke and PB-Piedmont (PB-P) models are used to simulate smoke plume evolution during the day time and smoke drainage and fog formation during the nighttime for hypothetical prescribed burns on 5–8 February 2011 at the Stewart Army Base in the southeastern United States. Daysmoke simulation is…
Publication Type: Journal Article
Restoring historical forest conditions in a diverse inland Pacific Northwest landscape
Year: 2018
A major goal of managers in fire-prone forests is restoring historical structure and composition to promote resilience to future drought and disturbance. To accomplish this goal, managers require information about reference conditions in different forest types, as well as tools to determine which individual trees to retain or remove to approximate those reference conditions. We used dendroecological reconstructions and General Land Office records to quantify historical forest structure and composition within a 13,600 ha study area in eastern Oregon where the USDA Forest Service is planning…
Publication Type: Journal Article
Prescribed fire regimes subtly alter ponderosa pine forest plant community structure
Year: 2018
Prescribed fire is an active management tool used to address wildfire hazard and ecological concerns associated with fire exclusion and suppression over the past century. Despite widespread application in the United States, there is considerable inconsistency and lack of information regarding the extent to which specific outcomes are achieved and under what prescribed fire regimes, particularly in regard to ecological goals related to plant community structure. We quantify differences and patterns in plant functional group abundance, species richness and diversity, and other key forest…
Publication Type: Journal Article
Wildfire and topography impacts on snow accumulation and retention in montane forests
Year: 2018
Wildfires are increasing in frequency, severity, and size in many parts of the world. Forest fires can fundamentally affect snowpack and watershed hydrology by restructuring forest composition and structure. Topography is an important factor in snowpack accumulation and ablation as it influences exposure to solar radiation and atmospheric conditions. Few direct measurements of post-fire snowpack have been taken and none to this date that evaluate how topographical aspect influences the effect of forest fire on snowpack accumulation and ablation. We set up a two-year experiment on the…
Publication Type: Journal Article
Regional and local controls on historical fire regimes of dry forests and woodlands in the Rogue River Basin, Oregon, USA
Year: 2018
Fire regimes structure plant communities worldwide with regional and local factors, including anthropogenic fire management, influencing fire frequency and severity. Forests of the Rogue River Basin in Oregon, USA, are both productive and fire-prone due to ample winter precipitation and summer drought; yet management in this region is strongly influenced by forest practices that depend on fire exclusion. Regionally, climate change is increasing fire frequency, elevating the importance of understanding historically frequent-fire regimes. We use cross-dated fire-scars to characterize historical…
Publication Type: Journal Article