Research Database
Displaying 81 - 100 of 114
Tree mortality and structural change following mixed-severity fire in Pseudotsuga forests of Oregon’s western Cascades, USA
Year: 2016
Mixed-severity fires are increasingly recognized as common in Pseudotsuga forests of the Pacific Northwest and may be an important mechanism for developing or maintaining their structural diversity and complexity. Questions remain about how tree mortality varies and forest structure is altered across the disturbance gradient imposed by these fires. Therefore, we sampled live and dead trees at 45–1.0 ha plots, each with four 0.10 ha nested subplots, stratified across an unburned, low, moderate and high-severity fire gradient. Burned plots were primarily sampled 10 and 22 years post-fire,…
Publication Type: Journal Article
Relating Fire-Caused Change in Forest Structure to Remotely Sensed Estimates of Fire Severity
Year: 2016
Fire severity maps are an important tool for understanding fire effects on a landscape. The relative differenced normalized burn ratio (RdNBR) is a commonly used severity index in California forests, and is typically divided into four categories: unchanged, low, moderate, and high. RdNBR is often calculated twice—from images collected the year of the fire (initial assessment) and during the summer of the year after the fire (extended assessment). Both collection times have been calibrated to field measurements, but field data with both pre-fire and post-fire observations of matched plots are…
Publication Type: Journal Article
Spatiotemporal dynamics of recent mountain pine beetle and western spruce budworm outbreaks across the Pacific Northwest Region
Year: 2015
Across the western US, the two most prevalent native forest insect pests are mountain pine beetle (MPB; Dendroctonus ponderosae; a bark beetle) and western spruce budworm (WSB; Choristoneura freemani; a defoliator). MPB outbreaks have received more forest management attention than WSB outbreaks, but studies to date have not compared their cumulative mortality impacts in an integrated, regional framework. The objectives of this study are to: (1) map tree mortality associated with MPB and WSB outbreaks by integrating forest health aerial detection surveys (ADS; 1970–2012), Landsat time series (…
Publication Type: Journal Article
Sources and implications of bias and uncertainty in a century of US wildfire activity data
Year: 2015
Analyses to identify and relate trends in wildfire activity to factors such as climate, population, land use or land cover and wildland fire policy are increasingly popular in the United States. There is a wealth of US wildfire activity data available for such analyses, but users must be aware of inherent reporting biases, inconsistencies and uncertainty in the data in order to maximise the integrity and utility of their work. Data for analysis are generally acquired from archival summary reports of the federal or interagency fire organisations; incident-level wildfire reporting systems of…
Publication Type: Journal Article
Landsat time series and lidar as predictors of live and dead basal area across five bark beetle-affected forests
Year: 2014
Bark beetle-caused tree mortality affects important forest ecosystem processes. Remote sensing methodologies that quantify live and dead basal area (BA) in bark beetle-affected forests can provide valuable information to forest managers and researchers. We compared the utility of light detection and ranging (lidar) and the Landsat-based detection of trends in disturbance and recovery (LandTrendr) algorithm to predict total, live, dead, and percent dead BA in five bark beetle-affected forests in Alaska, Arizona, Colorado, Idaho, and Oregon, USA. The BA response variables were predicted from…
Publication Type: Journal Article
Mapping the daily progression of large wildland fires using MODIS active fire data
Year: 2014
High temporal resolution information on burnt area is needed to improve fire behaviour and emissions models. We used the Moderate Resolution Imaging Spectroradiometer (MODIS) thermal anomaly and active fire product (MO(Y)D14) as input to a kriging interpolation to derive continuous maps of the timing of burnt area for 16 large wildland fires. For each fire, parameters for the kriging model were defined using variogram analysis. The optimal number of observations used to estimate a pixel’s time of burning varied between four and six among the fires studied. The median standard error from…
Publication Type: Journal Article
Recent mountain pine beetle outbreaks, wildfire severity, and postfire tree regeneration in the US Northern Rockies
Year: 2014
Widespread tree mortality caused by outbreaks of native bark beetles (Circulionidae: Scolytinae) in recent decades has raised concern among scientists and forest managers about whether beetle outbreaks fuel more ecologically severe forest fires and impair postfire resilience. To investigate this question, we collected extensive field data following multiple fires that burned subalpine forests in 2011 throughout the Northern Rocky Mountains across a spectrum of prefire beetle outbreak severity, primarily from mountain pine beetle (Dendroctonus ponderosae). We found that recent (2001–2010)…
Publication Type: Journal Article
Challenges of assessing fire and burn severity using field measures, remote sensing and modelling
Year: 2014
Comprehensive assessment of ecological change after fires have burned forests and rangelands is important if we are to understand, predict and measure fire effects. We highlight the challenges in effective assessment of fire and burn severity in the field and using both remote sensing and simulation models. We draw on diverse recent research for guidance on assessing fire effects on vegetation and soil using field methods, remote sensing and models. We suggest that instead of collapsing many diverse, complex and interacting fire effects into a single severity index, the effects of fire should…
Publication Type: Journal Article
Modeling Regional-Scale Wildland Fire Emissions with the Wildland Fire Emissions Information System
Year: 2014
As carbon modeling tools become more comprehensive, spatial data are needed to improve quantitative maps of carbon emissions from fire.The Wildland Fire Emissions Information System (WFEIS) provides mapped estimates of carbon emissions from historical forest fires in the United States through a web browser. WFEIS improves access to data and provides a consistent approach to estimating emissions at landscape, regional, and continental scales. The system taps into data and tools developed by the U.S. Forest Serviceto describe fuels, fuel loadings, and fuel consumption and merges information…
Publication Type: Journal Article
Correlations between components of the water balance and burned area reveal insights for predicting forest fire area in the southwest United States
Year: 2014
We related measurements of annual burned area in the southwest United States during 1984–2013 to records of climate variability. Within forests, annual burned area correlated at least as strongly with spring–summer vapour pressure deficit (VPD) as with 14 other drought-related metrics, including more complex metrics that explicitly represent fuel moisture. Particularly strong correlations with VPD arise partly because this term dictates the atmospheric moisture demand. Additionally, VPD responds to moisture supply, which is difficult to measure and model regionally due to complex…
Publication Type: Journal Article
Assessing the quality of forest fuel loading data collected using public participation methods and smartphones
Year: 2014
Effective wildfire management in the wildland–urban interface (WUI) depends on timely data on forest fuel loading to inform management decisions. Mobile personal communication devices, such as smartphones, present new opportunities to collect data in the WUI, using sensors within the device – such as the camera, global positioning system (GPS), accelerometer, compass, data storage and networked data transfer. In addition to providing a tool for forest professionals, smartphones can also facilitate engaging other members of the community in forest management as they are now available to a…
Publication Type: Journal Article
Mapping day-of-burning with coarse-resolution satellite fire-detection data
Year: 2014
Evaluating the influence of observed daily weather on observed fire-related effects (e.g. smoke production, carbon emissions and burn severity) often involves knowing exactly what day any given area has burned. As such, several studies have used fire progression maps – in which the perimeter of an actively burning fire is mapped at a fairly high temporal resolution – or MODIS satellite data to determine the day-of-burning, thereby allowing an evaluation of the influence of daily weather. However, fire progression maps have many caveats, the most substantial being that they are rarely mapped…
Publication Type: Journal Article
Climate stress increases forest fire severity across the western United States
Year: 2013
Pervasive warming can lead to chronic stress on forest trees, which may contribute to mortality resulting from fire-caused injuries. Longitudinal analyses of forest plots from across the western US show that high pre-fire climatic water deficit was related to increased post-fire tree mortality probabilities. This relationship between climate and fire was present after accounting for fire defences and injuries, and appeared to influence the effects of crown and stem injuries. Climate and fire interactions did not vary substantially across geographical regions, major genera and tree sizes. Our…
Publication Type: Journal Article
Natural tree regeneration and coarse woody debris dynamics after a forest fire in the Western Cascade range
Year: 2013
We monitored coarse woody debris dynamics and natural tree regeneration over a 14-year period after the 1991 Warner Creek Fire, a 3631-ha (8,972-ac) mixed severity fire in the western Cascade Range of Oregon. Rates for tree mortality in the fire, postfire mortality, snag fall, and snag fragmentation all showed distinct patterns by tree diameter and species, with Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) more likely to survive a fire, and to remain standing as a snag, than other common tree species. Natural seedling regeneration was abundant, rapid, and highly variable in space.…
Publication Type: Report
Is burn severity related to fire intensity? Observations from landscape scale remote sensing
Year: 2013
Biomass burning by wildland fires has significant ecological, social and economic impacts. Satellite remote sensing provides direct measurements of radiative energy released by the fire (i.e. fire intensity) and surrogate measures of ecological change due to the fire (i.e. fire or burn severity). Despite anecdotal observations causally linking fire intensity with severity, the nature of any relationship has not been examined over extended spatial scales. We compare fire intensities defined by Moderate Resolution Imaging Spectroradiometer Fire Radiative Power (MODIS FRP) products with Landsat-…
Publication Type: Journal Article
Projected Future Changes in Vegetation in Western North America in the Twenty-First Century
Year: 2013
Rapid and broad-scale forest mortality associated with recent droughts, rising temperature, and insect outbreaks has been observed over western North America (NA). Climate models project additional future warming and increasing drought and water stress for this region. To assess future potential changes in vegetation distributions in western NA, the Community Earth System Model (CESM) coupled with its Dynamic Global Vegetation Model (DGVM) was used under the future A2 emissions scenario. To better span uncertainties in future climate, eight sea surface temperature (SST) projections provided…
Publication Type: Journal Article
Assessing forest vegetation and fire simulation model performance after the Cold Springs wildfire, Washington, USA
Year: 2013
Given that resource managers rely on computer simulation models when it is difficult or expensive to obtain vital information directly, it is important to evaluate how well a particular model satisfies applications for which it is designed. The Forest Vegetation Simulator (FVS) is used widely for forest management in the US, and its scope and complexity continue to increase. This paper focuses on the accuracy of estimates made by the Fire and Fuels Extension (FFE-FVS) predictions through comparisons between model outputs and measured post-fire conditions for the Cold Springs wildfire and on…
Publication Type: Journal Article
Mastication and Prescribed Fire Influences on Tree Mortality and Predicted Fire Behavior in Ponderosa Pine
Year: 2012
The purpose of this study was to provide land managers with information on potential wildfire behavior and tree mortality associated with mastication and masticated/fire treatments in a plantation. Additionally, the effect of pulling fuels away from tree boles before applying fire treatment was studied in relation to tree mortality. Fuel characteristics and tree mortality data were gathered before and after treatments in a 25-year-old ponderosa pine (Pinus ponderosa C. Lawson) plantation. A random block design was used with three treatments plus a control at each of four blocks. Four plots…
Publication Type: Journal Article
Fuel Treatment Effectiveness in California Yellow Pine and Mixed Conifer Forests
Year: 2012
We assessed the effectiveness of forest fuel thinning projects that explicitly removed surface and ladder fuels (all but one were combined mechanical and prescribed fire/pile burn prescriptions) in reducing fire severity and tree mortality in 12 forest fires that burned in eastern and southern California between 2005 and 2011. All treatments and fires occurred in yellow pine or mixed conifer forests, in a variety of landscape conditions. Most fires burned under warm, dry conditions, with moderate to high winds. With few exceptions, fire severity measures (bole char height, scorch and torch…
Publication Type: Journal Article
Pattern and process of prescribed fires influence effectiveness at reducing wildfire severity in dry coniferous forests
Year: 2012
We examined the effects of three early season (spring) prescribed fires on burn severity patterns of summer wildfires that occurred 1–3 years post- treatment in a mixed conifer forest in central Idaho. Wildfire and prescribed fire burn severities were estimated as the difference in normalized burn ratio (dNBR) using Landsat imagery. We used GIS derived vegetation, topography, and treatment variables to generate models predicting the wildfire burn severity of 1286–5500 30- m pixels within and around treated areas. We found that wildfire severity was significantly lower in treated areas than in…
Publication Type: Journal Article