Research Database
Displaying 81 - 100 of 107
Drivers of Wildfire Suppression Costs: A Review
Year: 2016
As federal spending on wildland fire suppression has increased dramatically in recent decades, significant policymaking has been designed, at least in part, to address and temper rising costs. Effective strategies for controlling public spending and leveraging limited wildfire management resources depend on a comprehensive understanding of the drivers of suppression costs. Problematically, frequently noted drivers often do not explain variability between similar wildfires or comparable wildfire seasons. As speculation and scrutiny around rising costs have increased, so too have scholarly…
Publication Type: Report
Managed wildfire effects on forest resilience and water in the Sierra Nevada
Year: 2016
Fire suppression in many dry forest types has left a legacy of dense, homogeneous forests. Such landscapes have high water demands and fuel loads, and when burned can result in catastrophically large fires. These characteristics are undesirable in the face of projected warming and drying in the western US. Alternative forest and fire treatments based on managed wildfire—a regime in which fires are allowed to burn naturally and only suppressed under defined management conditions—offer a potential strategy to ameliorate the effects of fire suppression. Understanding the long-term effects of…
Publication Type: Journal Article
Assessment of wildland fire impacts on watershed annual water yield: Analytical framework and case studies in the United States
Year: 2016
More than 50% of water supplies in the conterminous United States originate on forestland or rangeland, and are potentially under increasing stress as a result of larger and more severe wildfires. Little is known however about the long-term impacts of fire on annual water yield, and the role of climate variability within this context. We here propose a framework for evaluating wildland fire impacts on streamflow that combines double-mass analysis with new methods (change point analysis, climate elasticity modeling, and process-based modeling) to distinguish between multi-year fire and climate…
Publication Type: Journal Article
Does increased forest protection correspond to higher fire severity in frequent-fire forests of the western United States?
Year: 2016
There is a widespread view among land managers and others that the protected status of many forestlands in the western United States corresponds with higher fire severity levels due to historical restrictions on logging that contribute to greater amounts of biomass and fuel loading in less intensively managed areas, particularly after decades of fire suppression. This view has led to recent proposals—both administrative and legislative—to reduce or eliminate forest protections and increase some forms of logging based on the belief that restrictions on active management have increased fire…
Publication Type: Journal Article
Quantifying the influence of previously burned areas on suppression effectiveness and avoided exposure: a case study of the Las Conchas Fire
Year: 2016
We present a case study of the Las Conchas Fire (2011) to explore the role of previously burned areas (wildfires and prescribed fires) on suppression effectiveness and avoided exposure. Methodological innovations include characterisation of the joint dynamics of fire growth and suppression activities, development of a fire line effectiveness framework, and quantification of relative fire line efficiencies inside and outside of previously burned areas. We provide descriptive statistics of several fire line effectiveness metrics. Additionally, we leverage burn probability modelling to examine…
Publication Type: Journal Article
Can low-severity fire reverse compositional change in montane forests of the Sierra Nevada, California, USA?
Year: 2016
Throughout the Sierra Nevada, nearly a century of fire suppression has altered the tree species composition, forest structure, and fire regimes that were previously characteristic of montane forests. Species composition is fundamentally important because species differ in their tolerances to fire and environmental stressors, and these differences dictate future forest structure and influence fire regime attributes. In some lower montane stands, shade-tolerant, fire-sensitive species have driven a threefold increase in tree density that may intensify the risk of high-severity fire. In upper…
Publication Type: Journal Article
Dormant season grazing may decrease wildfire probability by increasing fuel moisture and reducing fuel amount and continuity
Year: 2015
Mega-fires and unprecedented expenditures on fire suppression over the past decade have resulted in a renewed focus on presuppression management. Dormant season grazing may be a treatment to reduce fuels in rangeland, but its effects have not been evaluated. In the present study, we evaluated the effect of dormant season grazing (winter grazing in this ecosystem) by cattle on fuel characteristics in sagebrush (Artemisia L.) communities at five sites in south-eastern Oregon. Winter grazing reduced herbaceous fuel cover, continuity, height and biomass without increasing exotic annual grass…
Publication Type: Journal Article
Effect of fire prevention programs on accidental and incendiary wildfires on tribal lands in the United States
Year: 2015
Humans cause more than 55% of wildfires on lands managed by the USDA Forest Service and US Department of the Interior, contributing to both suppression expenditures and damages. One means to reduce the expenditures and damages associated with these wildfires is through fire prevention activities, which can include burn permits, public service programs or announcements, outreach efforts to schools, youth groups and equipment operators, and law enforcement. Using data from 17 US Bureau of Indian Affairs tribal units, we modeled the effect of prevention programs and law enforcement on the number…
Publication Type: Journal Article
The economic benefit of localised, short-term, wildfire-potential information
Year: 2015
Wildfire-potential information products are designed to support decisions for prefire staging of movable wildfire suppression resources across geographic locations. We quantify the economic value of these information products by defining their value as the difference between two cases of expected fire-suppression expenditures: one in which daily information about spatial variation in wildfire-potential is used to move fire suppression resources throughout the season, and the other case in which daily information is not used and fire-suppression resources are staged in their home locations all…
Publication Type: Journal Article
Drivers of Wildfire Suppression Costs: Literature Review and Annotated Bibliography
Year: 2015
Over the past century, wildland fire management has been core to the mission of federal land management agencies. In recent decades, however, federal spending on wildfire suppression has increased dramatically; suppression spending that on average accounted for less than 20 percent of the USFS’s discretionary funds prior to 2000 had grown to 43 percent of discretionary funds by 2008 (USDA 2009), and 51 percent in 2014 (USDA 2014). Rising suppression costs have created budgetary shortfalls and conflict as money “borrowed” from other budgets often cannot be paid back in full, and resources for…
Publication Type: Report
Topography, fuels, and fire exclusion drive fire severity of the Rim Fire in an old-growth mixed-conifer forest, Yosemite National Park, USA
Year: 2015
The number of large, high-severity fires has increased in the western United States over the past 30 years due to climate change and increasing tree density from fire suppression. Fuel quantity, topography, and weather during a burn control fire severity, and the relative contributions of these controls in mixed-severity fires in mountainous terrain are poorly understood. In 2013, the Rim Fire burned a previously studied 2125 ha area of mixed-conifer forest in Yosemite National Park. Data from 84 plots sampled in 2002 revealed increases in tree density, basal area, and fuel buildup since 1899…
Publication Type: Journal Article
Operational wildfire suppression modelling: a review evaluating development, state of the art and future directions
Year: 2015
Wildfires are an inherent part of the landscape in many parts of the world; however, they often impose substantial economic burdens on human populations where they occur, both in terms of impacts and of management costs. As wildfires burn towards human assets, a universal response has been to deploy fire suppression resources (crews, vehicles and aircraft) to extinguish them, and limit their spread or impacts. The determination of the appropriate levels of investment, resource allocation and suppression tactics is a challenge for managers. As suppression expenses account for a substantial…
Publication Type: Journal Article
Western Water Threatened by Wildfire: It's Not Just A Public Lands Issue
Year: 2015
Water is the arid West’s most precious and most vulnerable resource. Western water allows metropolises to bloom in the desert, it fuels America’s largest agricultural economy and it supports a ski industry worth more than $6 billion to state and local economies (Burakowski and Magnusson, 2012). The delivery of clean and abundant water is extremely sensitive to disaster, whether natural or man-made. As years-long drought conditions across the region reinforce, the water quantity and quality in the West is never certain.
Publication Type: Report
Relations between soil hydraulic properties and burn severity
Year: 2015
Wildfire can affect soil hydraulic properties, often resulting in reduced infiltration. The magnitude of change in infiltration varies depending on the burn severity. Quantitative approaches to link burn severity with changes in infiltration are lacking. This study uses controlled laboratory measurements to determine relations between a remotely sensed burn severity metric (dNBR, change in normalised burn ratio) and soil hydraulic properties (SHPs). SHPs were measured on soil cores collected from an area burned by the 2013 Black Forest fire in Colorado, USA. Six sites with the same soil type…
Publication Type: Journal Article
Catchment-scale stream temperature response to land disturbance by wildfire governed by surface–subsurface energy exchange and atmospheric controls
Year: 2014
In 2003, the Lost Creek wildfire severely burned 21,000 hectares of forest on the eastern slopes of the Canadian Rocky Mountains. Seven headwater catchments with varying levels of disturbance (burned, post-fire salvage logged, and unburned) were instrumented as part of the Southern Rockies Watershed Project to measure streamflow, stream temperature, and meteorological conditions. From 2004 to 2010 mean annual stream temperature (Ts) was elevated 0.8–2.1 [1]C in the burned and post-fire salvage logged streams compared to the unburned streams. Mean daily maximum Ts was 1.0–3.0 [1]C warmer and…
Publication Type: Journal Article
Wildfire and the Future of Water Supply
Year: 2014
In many parts of the world, forests provide high quality water for domestic, agricultural, industrial, and ecological needs, with water supplies in those regions inextricably linked to forest health. Wildfires have the potential to have devastating effects on aquatic ecosystems and community drinking water supply through impacts on water quantity and quality. In recent decades, a combination of fuel load accumulation, climate change, extensive droughts, and increased human presence in forests have resulted in increases in area burned and wildfire severity—a trend predicted to continue. Thus,…
Publication Type: Journal Article
Wildland firefighter safety zones: a review of past science and summary of future needs
Year: 2014
Current wildland firefighter safety zone guidelines are based on studies that assume flat terrain, radiant heating, finite flame width, constant flame temperature and high flame emissivity. Firefighter entrapments and injuries occur across a broad range of vegetation, terrain and atmospheric conditions generally when they are within two flame heights of the fire. Injury is not confined to radiant heating or flat terrain; consequently, convective heating should be considered as a potential heating mode. Current understanding of energy transport in wildland fires is briefly summarised, followed…
Publication Type: Journal Article
Five-year legacy of wildfire and salvage logging impacts on nutrient runoff and aquatic plant, invertebrate, and fish productivity
Year: 2014
Ecohydrological linkages between phosphorus (P) production, stream algae, benthic invertebrate, and fish communities were studied for 4 years after severe wildfire in the Rocky Mountains (Alberta, Canada). Mean concentrations of all forms of P (soluble reactive, total dissolved, particulate, and total) were 2 to 13 times greater in burned and post-fire salvage-logged streams than in unburned streams (p < 0.001). Post-disturbance recovery of P was slow with differences in P-discharge relationships still evident 5 years after the fire (p < 0.001). Coupled P and sediment interactions were…
Publication Type: Journal Article
The relationship of large fire occurrence with drought and fire danger indices in the western USA, 1984-2008: the role of temporal scale
Year: 2013
The relationship between large fire occurrence and drought has important implications for fire prediction under current and future climates. This study’s primary objective was to evaluate correlations between drought and fire-danger-rating indices representing short- and long-term drought, to determine which had the strongest relationships with large fire occurrence at the scale of the western United States during the years 1984–2008. We combined 4–8-km gridded drought and fire-danger-rating indices with information on fires greater than 404.7 ha (1000 acres). To account for differences in…
Publication Type: Journal Article
Wildland firefighter entrapment avoidance: modelling evacuation triggers
Year: 2013
Wildland firefighters are often called on to make tactical decisions under stressful conditions in order to suppress a fire. These decisions can be hindered by human factors such as insufficient knowledge of surroundings and conditions, lack of experience, overextension of resources or loss of situational awareness. One potential tool for assisting fire managers in situations where human factors can hinder decision-making is the Wildland–Urban Interface Evacuation (WUIVAC) model, which models fire minimum travel times to create geographic trigger buffers for evacuation recommendations.…
Publication Type: Journal Article