Research Database
Displaying 141 - 160 of 202
Can low-severity fire reverse compositional change in montane forests of the Sierra Nevada, California, USA?
Year: 2016
Throughout the Sierra Nevada, nearly a century of fire suppression has altered the tree species composition, forest structure, and fire regimes that were previously characteristic of montane forests. Species composition is fundamentally important because species differ in their tolerances to fire and environmental stressors, and these differences dictate future forest structure and influence fire regime attributes. In some lower montane stands, shade-tolerant, fire-sensitive species have driven a threefold increase in tree density that may intensify the risk of high-severity fire. In upper…
Publication Type: Journal Article
1984–2010 trends in fire burn severity and area for the conterminous US
Year: 2016
Burn severity products created by the Monitoring Trends in Burn Severity (MTBS) project were used to analyse historical trends in burn severity. Using a severity metric calculated by modelling the cumulative distribution of differenced Normalized Burn Ratio (dNBR) and Relativized dNBR (RdNBR) data, we examined burn area and burn severity of 4893 historical fires (1984–2010) distributed across the conterminous US (CONUS) and mapped by MTBS. Yearly mean burn severity values (weighted by area), maximum burn severity metric values, mean area of burn, maximum burn area and total burn area were…
Publication Type: Journal Article
Impact of anthropogenic climate change on wildfire across western US forests
Year: 2016
Increased forest fire activity across the western continental United States (US) in recent decades has likely been enabled by a number of factors, including the legacy of fire suppression and human settlement, natural climate variability, and human-caused climate change. We use modeled climate projections to estimate the contribution of anthropogenic climate change to observed increases in eight fuel aridity metrics and forest fire area across the western United States. Anthropogenic increases in temperature and vapor pressure deficit significantly enhanced fuel aridity across western US…
Publication Type: Journal Article
Risk terminology primer: Basic principles and a glossary for the wildland fire management community
Year: 2016
Risk management is being increasingly promoted as an appropriate method for addressing wildland fire management challenges. However, a lack of a common understanding of risk concepts and terminology is hindering effective application. In response, this General Technical Report provides a set of clear, consistent, understandable, and usable definitions for terms associated with wildland fire risk management. The material presented herein is not brand-new or innovative per se, but rather synthesizes the extant science so that readers can readily make a crosswalk to the professional literature.…
Publication Type: Report
Review of the health effects of wildland fire smoke on wildland firefighters and the public
Year: 2016
Each year, the general public and wildland firefighters in the US are exposed to smoke from wildland fires. As part of an effort to characterize health risks of breathing this smoke, a review of the literature was conducted using five major databases, including PubMed and MEDLINE Web of Knowledge, to identify smoke components that present the highest hazard potential, the mechanisms of toxicity, review epidemiological studies for health effects and identify the current gap in knowledge on the health impacts of wildland fire smoke exposure. Respiratory events measured in time series studies as…
Publication Type: Journal Article
Drivers of Wildfire Suppression Costs: A Review
Year: 2016
As federal spending on wildland fire suppression has increased dramatically in recent decades, significant policymaking has been designed, at least in part, to address and temper rising costs. Effective strategies for controlling public spending and leveraging limited wildfire management resources depend on a comprehensive understanding of the drivers of suppression costs. Problematically, frequently noted drivers often do not explain variability between similar wildfires or comparable wildfire seasons. As speculation and scrutiny around rising costs have increased, so too have scholarly…
Publication Type: Report
Climate-driven changes in forest succession and the influence of management on forest carbon dynamics in the Puget Lowlands of Washington State, USA
Year: 2016
Projecting the response of forests to changing climate requires understanding how biotic and abiotic controls on tree growth will change over time. As temperature and interannual precipitation variability increase, the overall forest response is likely to be influenced by species-specific responses to changing climate. Management actions that alter composition and density may help buffer forests against the effects of changing climate, but may require tradeoffs in ecosystem services. We sought to quantify how projected changes in climate and different management regimes would alter the…
Publication Type: Journal Article
Does increased forest protection correspond to higher fire severity in frequent-fire forests of the western United States?
Year: 2016
There is a widespread view among land managers and others that the protected status of many forestlands in the western United States corresponds with higher fire severity levels due to historical restrictions on logging that contribute to greater amounts of biomass and fuel loading in less intensively managed areas, particularly after decades of fire suppression. This view has led to recent proposals—both administrative and legislative—to reduce or eliminate forest protections and increase some forms of logging based on the belief that restrictions on active management have increased fire…
Publication Type: Journal Article
Incorporating Anthropogenic Influences into Fire Probability Models: Effects of Human Activity and Climate Change on Fire Activity in California
Year: 2016
The costly interactions between humans and wildfires throughout California demonstrate the need to understand the relationships between them, especially in the face of a changing climate and expanding human communities. Although a number of statistical and process-based wildfire models exist for California, there is enormous uncertainty about the location and number of future fires, with previously published estimates of increases ranging from nine to fifty-three percent by the end of the century. Our goal is to assess the role of climate and anthropogenic influences on the state’s fire…
Publication Type: Journal Article
Quantifying the influence of previously burned areas on suppression effectiveness and avoided exposure: a case study of the Las Conchas Fire
Year: 2016
We present a case study of the Las Conchas Fire (2011) to explore the role of previously burned areas (wildfires and prescribed fires) on suppression effectiveness and avoided exposure. Methodological innovations include characterisation of the joint dynamics of fire growth and suppression activities, development of a fire line effectiveness framework, and quantification of relative fire line efficiencies inside and outside of previously burned areas. We provide descriptive statistics of several fire line effectiveness metrics. Additionally, we leverage burn probability modelling to examine…
Publication Type: Journal Article
Restoration impacts on fuels and fire potential in a dryland tropical ecosystem dominated by the invasive grass Megathyrsus maximus
Year: 2015
Ecological restoration often attempts to promote native species while managing for disturbances such as fire and non-native invasions. The goal of this research was to investigate whether restoration of a non-native, invasive Megathyrsus maximus (guinea grass) tropical grassland could simultaneously promote native species and reduce fire potential. Megathyrsus maximus was suppressed with herbicide, and three suites of native species—each including the same groundcover and shrub, and one of three tree species—were outplanted in a randomized, complete block design that also included herbicide…
Publication Type: Journal Article
Modeling the direct effect of salvage logging on long-term temporal fuel dynamics in dry-mixed conifer forests
Year: 2015
Salvage logging has been proposed to reduce post-fire hazardous fuels and mitigate re-burn effects, but debate remains about its effectiveness when considering fuel loadings are dynamic, and re-burn occurrence is stochastic, in time. Therefore, evaluating salvage loggings capacity to reduce hazardous fuels requires estimating fuel loadings in unmanipulated and salvaged stands over long time periods. We sampled for snag dynamics, decomposition rates, and fuel loadings within unmanipulated high-severity portions of 7 fires, spanning a 24-year chronosequence, in dry-mixed conifer forests of…
Publication Type: Journal Article
Dormant season grazing may decrease wildfire probability by increasing fuel moisture and reducing fuel amount and continuity
Year: 2015
Mega-fires and unprecedented expenditures on fire suppression over the past decade have resulted in a renewed focus on presuppression management. Dormant season grazing may be a treatment to reduce fuels in rangeland, but its effects have not been evaluated. In the present study, we evaluated the effect of dormant season grazing (winter grazing in this ecosystem) by cattle on fuel characteristics in sagebrush (Artemisia L.) communities at five sites in south-eastern Oregon. Winter grazing reduced herbaceous fuel cover, continuity, height and biomass without increasing exotic annual grass…
Publication Type: Journal Article
Effect of fire prevention programs on accidental and incendiary wildfires on tribal lands in the United States
Year: 2015
Humans cause more than 55% of wildfires on lands managed by the USDA Forest Service and US Department of the Interior, contributing to both suppression expenditures and damages. One means to reduce the expenditures and damages associated with these wildfires is through fire prevention activities, which can include burn permits, public service programs or announcements, outreach efforts to schools, youth groups and equipment operators, and law enforcement. Using data from 17 US Bureau of Indian Affairs tribal units, we modeled the effect of prevention programs and law enforcement on the number…
Publication Type: Journal Article
Wildland fire deficit and surplus in the western United States, 1984-2012
Year: 2015
Wildland fire is an important disturbance agent in the western US and globally. However, the natural role of fire has been disrupted in many regions due to the influence of human activities, which have the potential to either exclude or promote fire, resulting in a "fire deficit" or "fire surplus", respectively. In this study, we developed a model of expected area burned for the western US as a function of climate from 1984 to 2012. We then quantified departures from expected area burned to identify geographic regions with fire deficit or surplus. We developed our model of area burned as a…
Publication Type: Journal Article
Developing a post-processor to link the Forest Vegetation Simulator (FVS) and the Fuel Characteristic Classification System (FCCS)
Year: 2015
In this project, we developed a Forest Vegetation Simulator (FVS, JFSP Project #) post-processor (FVS2FCCS) to convert FVS simulated treelist and surface fuel data into Fuel Characteristics Classification System (FCCS, JFSP Project #98-1-1-06) fuelbed format (.xml) that can be read and processed by the FCCS to create estimates of surface fire behavior, including reaction intensity (Btu ft-2 min-1 or kJ m2), rate-of-spread (ft min-1 or m min-1), and flame length (ft or m). Post-processors are programs that extend FVS modeling, reporting, and display capabilities. Our post-processor allows…
Publication Type: Report
Projected major fire and vegetation changes in the Pacific Northwest of the conterminous United States under selected CMIP5 climate futures
Year: 2015
Climate change adaptation and mitigation require understanding of vegetation response to climate change. Using the MC2 dynamic global vegetation model (DGVM) we simulate vegetation for the Northwest United States using results from 20 different Climate Model Intercomparison Project Phase 5 (CMIP5) models downscaled using the MACA algorithm. Results were generated for representative concentration pathways (RCPs) 4.5 and 8.5 under vegetation modeling scenarios with and without fire suppression for a total of 80 model runs for future projections. For analysis, results were aggregated by three…
Publication Type: Journal Article
The economic benefit of localised, short-term, wildfire-potential information
Year: 2015
Wildfire-potential information products are designed to support decisions for prefire staging of movable wildfire suppression resources across geographic locations. We quantify the economic value of these information products by defining their value as the difference between two cases of expected fire-suppression expenditures: one in which daily information about spatial variation in wildfire-potential is used to move fire suppression resources throughout the season, and the other case in which daily information is not used and fire-suppression resources are staged in their home locations all…
Publication Type: Journal Article
A review of the challenges and opportunities in estimating above ground forest biomass using tree-level models
Year: 2015
Accurate biomass measurements and analyses are critical components in quantifying carbon stocks and sequestration rates, assessing potential impacts due to climate change, locating bio-energy processing plants, and mapping and planning fuel treatments. To this end, biomass equations will remain a key component of future carbon measurements and estimation. As researchers in biomass and carbon estimation, we review the present scenario of aboveground biomass estimation, focusing particularly on estimation using tree-level models and identify some cautionary points that we believe will improve…
Publication Type: Journal Article
Modeling spatial and temporal dynamics of wind flow and potential fire behavior following a mountain pine beetle outbreak in a lodgepole pine forest
Year: 2015
Patches of live, dead, and dying trees resulting from bark beetle-caused mortality alter spatial and temporal variability in the canopy and surface fuel complex through changes in the foliar moisture content of attacked trees and through the redistribution of canopy fuels. The resulting heterogeneous fuels complexes alter within-canopy wind flow, wind fluctuations, and rate of fire spread. However, there is currently little information about the potential influence of different rates and patterns of mortality on wind flow and fire behavior following bark beetle outbreaks. In this study, we…
Publication Type: Journal Article
Pagination
- First page
- Previous page
- …
- 6
- 7
- 8
- 9
- 10
- …
- Next page
- Last page