Research Database
Displaying 1 - 9 of 9
Human Fire Use and Management: A Global Database of Anthropogenic Fire Impacts for Modelling
Year: 2022
Human use and management of fire in landscapes have a long history and vary globally in purpose and impact. Existing local research on how people use and manage fire is fragmented across multiple disciplines and is diverse in methods of data collection and analysis. If progress is to be made on systematic understanding of human fire use and management globally, so that it might be better represented in dynamic global vegetation models, for example, we need improved synthesis of existing local research and literature. The database of anthropogenic fire impacts (DAFI) presented here is a…
Publication Type: Journal Article
Extreme Winds Alter Influence of Fuels and Topography on Megafire Burn Severity in Seasonal Temperate Rainforests under Record Fuel Aridity
Year: 2022
Nearly 0.8 million hectares of land were burned in the North American Pacific Northwest (PNW) over two weeks under record-breaking fuel aridity and winds during the extraordinary 2020 fire season, representing a rare example of megafires in forests west of the Cascade Mountains. We quantified the relative influence of weather, vegetation, and topography on patterns of high burn severity (>75% tree mortality) among five synchronous megafires in the western Cascade Mountains. Despite the conventional wisdom in climate-limited fire regimes that regional drivers (e.g., extreme aridity, and…
Publication Type: Journal Article
The contribution of Indigenous stewardship to an historical mixed-severity fire regime in British Columbia, Canada
Year: 2022
Indigenous land stewardship and mixed-severity fire regimes both promote landscape heterogeneity, and the relationship between them is an emerging area of research. In our study, we reconstructed the historical fire regime of Ne Sextsine, a 5900-ha dry, Douglas-fir-dominated forest in the traditional territory of the T’exelc (Williams Lake First Nation) in British Columbia, Canada. Between 1550 and 1982 CE, we found median fire intervals of 18 years at the plot-level and 4 years at the study site-level. Ne Sextsine was characterized by an historical mixed-severity fire regime, dominated by…
Publication Type: Journal Article
Contemporary (1984–2020) fire history metrics for the conterminous United States and ecoregional differences by land ownership
Year: 2022
Background: Remotely sensed burned area products are critical to support fire modelling, policy, and management but often require further processing before use. Aim: We calculated fire history metrics from the Landsat Burned Area Product (1984–2020) across the conterminous U.S. (CONUS) including (1) fire frequency, (2) time since last burn (TSLB), (3) year of last burn, (4) longest fire-free interval, (5) average fire interval length, and (6) contemporary fire return interval (cFRI). Methods: Metrics were summarised by ecoregion and land ownership, and related to historical and cheatgrass…
Publication Type: Journal Article
A new approach to evaluate forest structure restoration needs across Oregon and Washington
Year: 2015
Widespread habitat degradation and uncharacteristic fire, insect, and disease outbreaks in forests across the western United States have led to highly publicized calls to increase the pace and scale of forest restoration. Despite these calls, we frequently lack a comprehensive understanding of forest restoration needs. In this study we demonstrate a new approach for evaluating where, how much, and what types of restoration are needed to move present day landscape scale forest structure towards a Natural Range of Variability (NRV) across eastern Washington, eastern Oregon, and southwestern…
Publication Type: Journal Article
Interval squeeze: altered fire regimes and demographic responses interact to threaten woody species persistence as climate changes
Year: 2015
Projected effects of climate change across many ecosystems globally include more frequent disturbance byfire and reduced plant growth due to warmer (and especially drier) conditions. Such changes affect species– particularly fire-intolerant woody plants – by simultaneously reducing recruitment, growth, and survival.Collectively, these mechanisms may narrow the fire interval window compatible with populationpersistence, driving species to extirpation or extinction. We present a conceptual model of these combinedeffects, based on synthesis of the known impacts of climate change and altered fire…
Publication Type: Journal Article
Modeling wildfire regimes in forest landscapes: abstracting a complex reality
Year: 2015
Fire is a natural disturbance that is nearly ubiquitous in terrestrial ecosystems. The capacity to burn exists virtually wherever vegetation grows. In some forested landscapes, fire is a principal driver of rapid ecosystem change, resetting succession ( McKenzie et al. 1996a ) and changing wildlife habitat (Cushman et al. 2011 ), hydrology ( Feikema et al. 2013 ), element cycles ( Smithwick 2011 ), and even landforms (Pierce et al. 2004 ). In boreal forests, for example, recurring wildfi res are the main cause of compositional and spatial patterns ( Wein and MacLean 1983 ), where a fi re-…
Publication Type: Book Chapter
The climate space of fire regimes in north-western North America
Year: 2015
Aim Studies of fire activity along environmental gradients have been undertaken, but the results of such studies have yet to be integrated with fire-regime analysis. We characterize fire-regime components along climate gradients and a gradient of human influence. Location We focus on a climatically diverse region of north-western North America extending from northern British Columbia, Canada, to northern Utah and Colorado, USA. Methods We used a multivariate framework to collapse 12 climatic variables into two major climate gradients and binned them into 73 discrete climate domains. We…
Publication Type: Journal Article
Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years
Year: 2015
Wildfire activity in boreal forests is anticipated to increase dramatically, with far-reaching ecological and socioeconomic consequences. Paleorecords are indispensible for elucidating boreal fire regime dynamics under changing climate, because fire return intervals and successional cycles in these ecosystems occur over decadal to centennial timescales. We present charcoal records from 14 lakes in the Yukon Flats of interior Alaska, one of the most flammable ecoregions of the boreal forest biome, to infer causes and consequences of fire regime change over the past 10,000 y. Strong…
Publication Type: Journal Article