Research Database
Displaying 1 - 3 of 3
Developing an online tool for identifying at-risk populations to wildfire smoke hazards
Year: 2018
Wildfire episodes pose a significant public health threat in the United States. Adverse health impacts associated with wildfires occur near the burn area as well as in places far downwind due to wildfire smoke exposures. Health effects associated with exposure to particulate matter arising from wildfires can range from mild eye and respiratory tract irritation to more serious outcomes such as asthma exacerbation, bronchitis, and decreased lung function. Real-time operational forecasts of wildfire smoke concentrations are available but they are not readily integrated with information on…
Publication Type: Journal Article
Estimating post-fire debris-flow hazards prior to wildfire using a statistical analysis of historical distributions of fire severity from remote sensing data
Year: 2018
Following wildfire, mountainous areas of the western United States are susceptible to debris flow during intense rainfall. Convective storms that can generate debris flows in recently burned areas may occur during or immediately after the wildfire, leaving insufficient time for development and implementation of risk mitigation strategies. We present a method for estimating post-fire debris-flow hazards before wildfire using historical data to define the range of potential fire severities for a given location based on the statistical distribution of severity metrics obtained from remote…
Publication Type: Journal Article
Influences of fire–vegetation feedbacks and post‐fire recovery rates on forest landscape vulnerability to altered fire regimes
Year: 2018
In the context of ongoing climatic warming, forest landscapes face increasing risk of conversion to non‐forest vegetation through alteration of their fire regimes and their post‐fire recovery dynamics. However, this pressure could be amplified or dampened, depending on how fire‐driven changes to vegetation feed back to alter the extent or behaviour of subsequent fires. Here we develop a mathematical model to formalize understanding of how fire–vegetation feedbacks and the time to forest recovery following high‐severity (i.e. stand‐replacing) fire affect the extent and stability of forest…
Publication Type: Journal Article