Research Database
Displaying 61 - 71 of 71
Analysis of Meteorological Conditions for the Yakima Smoke Intrusion Case Study, 28 September 2009
Year: 2013
On 28 September 2009, the Naches Ranger District on the Okanogan-Wenatchee National Forest in south-central Washington State ignited an 800-ha prescribed fire. Later that afternoon, elevated PM2.5 concentrations and visible smoke were reported in Yakima, Washington, about 40 km east of the burn unit. The U.S. National Weather Service forecast for the day had predicted good dispersion conditions and winds that would carry the smoke to the less populated area north of Yakima. We undertook a case study of this event to determine whether conditions leading to the intrusion of the smoke plume into…
Publication Type: Report
Relationships between climate and macroscale area burned in the western United States
Year: 2013
Increased wildfire activity (e.g. number of starts, area burned, fire behaviour) across the western United States in recent decades has heightened interest in resolving climate–fire relationships. Macroscale climate–fire relationships were examined in forested and non-forested lands for eight Geographic Area Coordination Centers in the western United States, using area burned derived from the Monitoring Trends in Burn Severity dataset (1984–2010). Fire-specific biophysical variables including fire danger and water balance metrics were considered in addition to standard climate variables of…
Publication Type: Journal Article
Atmospheric Interactions with Wildland Fire Behaviour II. Plume and Vortex Dynamics
Year: 2012
This paper is the second of two reviewing scientific literature from 100 years of research addressing interactions between the atmosphere and fire behaviour. These papers consider research on the interactions between the fuels burning at any instant and the atmosphere, and the interactions between the atmosphere and those fuels that will eventually burn in a given fire. The first paper reviews the progression from the surface atmospheric properties of temperature, humidity and wind to horizontal and vertical synoptic structures and ends with vertical atmospheric profiles. This second paper…
Publication Type: Journal Article
Atmospheric Interactions with Wildland Fire Behaviour I. Basic Surface Interactions, Vertical Profiles and Synoptic Structures
Year: 2012
This paper is the first of two reviewing scientific literature from 100 years of research addressing interactions between the atmosphere and fire behaviour. These papers consider research on the interactions between the fuels burning at any instant and the atmosphere, and the interactions between the atmosphere and those fuels that will eventually burn in a given fire. This first paper reviews the progression from the surface atmospheric properties of temperature, humidity and wind to horizontal and vertical synoptic structures and ends with vertical atmospheric profiles. (The companion paper…
Publication Type: Journal Article
Reducing hazardous fuels on nonindustrial private forests: factors influencing landowner decisions
Year: 2011
In mixed-ownership landscapes, fuels conditions on private lands have implications for fire risk on public lands and vice versa. The success of efforts to mitigate fire risk depends on the extent, efficacy, and coordination of treatments on nearby ownerships. Understanding factors in forest owners’ decisions to address the risk of wildland fire is therefore important. This research uses logistic regression to analyze mail survey data and identify factors in forest owners’ decisions to reduce hazardous fuels in the ponderosa pine (Pinus ponderosa) ecosystem on the east side of Oregon. Results…
Publication Type: Journal Article
Both topography and climate affected forest and woodland burn severity in two regions of the western US, 1984 to 2006
Year: 2011
Fire is a keystone process in many ecosystems of western North America. Severe fires kill and consume large amounts of above- and belowground biomass and affect soils, resulting in long-lasting consequences for vegetation, aquatic ecosystem productivity and diversity, and other ecosystem properties. We analyzed the occurrence of, and trends in, satellite-derived burn severity across six ecoregions in the Southwest and Northwest regions of the United States from 1984 to 2006 using data from the Monitoring Trends in Burn Severity project. Using 1,024 fires from the Northwest (4,311,871 ha) and…
Publication Type: Journal Article
Northwest Forest Plan -- The First 15 Years: Status and Trends of Northern Spotted Owl Populations and Habitats
Year: 2011
This is the second in a series of periodic monitoring reports on northern spotted owl (Strix occidentalis caurina) population and habitat trends on federally administered lands since implementation of the Northwest Forest Plan in 1994.Here we summarize results from a population analysis that included data from long-term demographic studies during 1985–2008. This data was analyzed separately by study area, and also in a meta-analysis across all study areas to assess temporal and spatial patterns in fecundity, apparent survival, recruitment, and annual rates of population change. Estimated…
Publication Type: Report
Synthesis of Knowledge of Extreme Fire Behavior: Volume I for Fire Managers
Year: 2011
The National Wildfire Coordinating Group definition of extreme fire behavior (EFB) indicates a level of fire behavior characteristics that ordinarily precludes methods of direct control action. One or more of the following is usually involved: high rate of spread, prolific crowning/spotting, presence of fire whirls, and strong convection column. Predictability is difficult because such fires often exercise some degree of influence on their environment and behave erratically, sometimes dangerously. Alternate terms include “blow up” and “fire storm.” Fire managers examining fires over the last…
Publication Type: Report
Reducing Fire Risk on Your Forest Property
Year: 2010
Whether you own a few acres or thousands, this publication will help you reduce the potential for wildfire damage on your property while improving overall forest health and wildlife habitat. Although these actions won’t prevent a wildfire from coming onto your property, they can make it more fire resistant. In other words, by following the guidelines in this publication you can reduce a fire’s severity so that most trees survive and firefighters are better able to attack and extinguish the blaze. While this publication provides suggestions for making your property more fire-resistant, it does…
Publication Type: Report
Social Science to Improve Fuels Management: A Synthesis of Research Relevant to Communicating with Homeowners About Fuels Management
Year: 2006
The large fires in southern California during the fall of 2003 highlighted the significant fire hazard many wildland-urban interface communities and homes currently face. Despite this risk, people continue to leave metropolitan areas for the beauty and tranquility of the wildland-urban interface. The peaceful natural views instill a treasured sense of place and privacy among residents, which can make it challenging to manage the environment and reduce fuels (Lee and Tribe 1987, Lee et al. 1987, Shands 1988, Sullivan 1994, Weise and Martin 1994). Firefighting and land management agencies as…
Publication Type: Report
A Homeowner’s Guide to Fire-Resistant Home Construction
Year: 2006
Defending homes from fast-spreading high-intensity wildfires is one of the most difficult and dangerous duties for wildland firefighters. Firefighters United for Safety, Ethics, and Ecology (FUSEE) feels strongly that informing homeowners about fire-resistant construction materials will help wildland firefighters better protect communities, and reduce some of the risks to firefighter safety. Moreover, when rural homes and communities are better prepared for wildland fire, then more options and opportunities open up to properly manage fires to restore forests and grasslands degraded from past…
Publication Type: Report