Research Database
Displaying 41 - 60 of 380
Fire Intensity and spRead forecAst (FIRA): A Machine Learning Based Fire Spread Prediction Model for Air Quality Forecasting Application
Year: 2025
Fire activities introduce hazardous impacts on the environment and public health by emitting various chemical species into the atmosphere. Most operational air quality forecast (AQF) models estimate smoke emissions based on the latest available satellite fire products, which may not represent real-time fire behaviors without considering fire spread. Hence, a novel machine learning (ML) based fire spread forecast model, the Fire Intensity and spRead forecAst (FIRA), is developed for AQF model applications. FIRA aims to improve the performance of AQF models by providing realistic, dynamic fire…
Publication Type: Journal Article
Three fuel models for predicting urban fire spread – a stopgap for emergency management in the US
Year: 2025
BackgroundPrevailing American wildland fire modelling systems fail to predict fire growth in urban areas due to the absence of burnable urban fuels.AimsThis research aims to identify fuel models that optimise fire spread in urban areas relative to a hypothetical fire spread model derived from observations of recent urban fires.MethodsA target Rate of Spread (RoS) is derived from observations of seven urban conflagrations to anchor the model to absolute RoS. Exhaustive parameter sweeps are used to identify combinations of fuel variables that…
Publication Type: Journal Article
Designing Burn Windows for Integrated Fire Management in Wetlands: Why Should Flooding Not Be Overlooked?
Year: 2025
Changes in natural wildfire patterns can cause significant impacts on biodiversity, health, and economies. This has sparked discussions on better fire management. One strategy used by countries is Integrated Fire Management (IFM), with prescribed burning as one of the main tools. Prescribed burns effectively depend on specific burn windows. These windows, defined as flood-free areas like savannas, may not suit wetlands due to the influence of flooding on factors like fuel availability. We examined how hydrological patterns affect burn windows in wetlands, using the Pantanal as a model—the…
Publication Type: Journal Article
Mechanical mastication and prescribed burning reduce forest fuels and alter stand structure in dry coniferous forests
Year: 2025
Mechanical thinning is often prescribed in dry coniferous forests to reduce stand density, ladder fuels, and canopy fuels before using prescribed burning to manage surface fuels. Mechanical mastication is a tool for thinning forests where commercial thinning is not viable. We evaluated the effects of mastication-based thinning – with and without subsequent prescribed burning – on forest structure and fuels in dry coniferous forests of the Pacific Northwest, USA. We thinned stands by masticating small-diameter trees and depositing the resulting slash on the forest floor. We then used…
Publication Type: Journal Article
A Wildfire Progression Simulation and Risk-Rating Methodology for Power Grid Infrastructure
Year: 2024
As the frequency and intensity of power line-induced wildfires increase due to climate-, human- , and infrastructure-related risk drivers, maintaining power system resilience and reducing environmental impacts become increasingly crucial. This paper presents a comprehensive methodology to assess the susceptibility, vulnerability, and risk of power line-induced wildfires for lines and nodes in an electric grid. The methodology integrates a well-established wildfire spread simulator into power flow analysis through a set of analytical steps. The proposed approach is applied to a case study…
Publication Type: Journal Article
Centering socioecological connections to collaboratively manage post- fire vegetation shifts
Year: 2024
Climate change is altering fire regimes and post-fire conditions, contributing to relatively rapid transformation of landscapes across the western US. Studies are increasingly documenting post-fire vegetation transitions, particularly from forest to non- forest conditions or from sagebrush to invasive annual grasses. The prevalence of climate-driven, post-fire vegetation transitions is likely to increase…
Publication Type: Journal Article
From flexibility to feasibility: identifying the policy conditions that support the management of wildfire for objectives other than full suppression
Year: 2024
Background. Intentional management of naturally ignited wildfires has emerged as a valuable tool for addressing the social and ecological consequences of a century of fire exclusion in policy and practice. Policy in the United States now allows wildfires to be managed for suppression and other than full suppression (OTFS) objectives simultaneously, giving flexibility to local decision makers. Aims. To extend existing research on the history of wildfire management, investigate how wildfire professionals interpret current policy with respect to OTFS management, and better understand how they…
Publication Type: Journal Article
Indigenous Fire Data Sovereignty: Applying Indigenous Data Sovereignty Principles to Fire Research
Year: 2024
Indigenous Peoples have been stewarding lands with fire for ecosystem improvement since time immemorial. These stewardship practices are part and parcel of the ways in which Indigenous Peoples have long recorded and protected knowledge through our cultural transmission practices, such as oral histories. In short, our Peoples have always been data gatherers, and as this article presents, we are also fire data gatherers and stewards. Given the growing interest in fire research with Indigenous communities, there is an opportunity for guidance on data collection conducted equitably and…
Publication Type: Journal Article
Resource objective wildfire leveraged to restore old growth forest structure while stabilizing carbon stocks in the southwestern United States
Year: 2024
Wildfire futures and aboveground carbon (C) dynamics associated with forest restoration programs that integrate resource objective wildfire as part of a larger treatment strategy are not well understood. Using simulation modeling, we examined alternative forest and fuel management strategies on a 237,218-ha study area within a 778,000-ha landscape that is a high priority target for federal restoration programs. We simulated two wildfire management scenarios combined with three levels of conventional forest restoration treatments over 64 years using a detailed landscape disturbance and…
Publication Type: Journal Article
Future fire events are likely to be worse than climate projections indicate – these are some of the reasons why
Year: 2024
BackgroundClimate projections signal longer fire seasons and an increase in the number of dangerous fire weather days for much of the world including Australia.AimsHere we argue that heatwaves, dynamic fire–atmosphere interactions and increased fuel availability caused by drought will amplify potential fire behaviour well beyond projections based on calculations of afternoon forest fire danger derived from climate models.MethodsWe review meteorological dynamics contributing to enhanced fire behaviour during heatwaves, drawing on examples of…
Publication Type: Journal Article
Fuel types misrepresent forest structure and composition in interior British Columbia: a way forward
Year: 2024
A clear understanding of the connectivity, structure, and composition of wildland fuels is essential for effective wildfire management. However, fuel typing and mapping are challenging owing to a broad diversity of fuel conditions and their spatial and temporal heterogeneity. In Canada, fuel types and potential fire behavior are characterized using the Fire Behavior Prediction (FBP) System, which uses an association approach to categorize vegetation into 16 fuel types based on stand structure and composition. In British Columbia (BC), provincial and national FBP System fuel type maps are…
Publication Type: Journal Article
Human driven climate change increased the likelihood of the 2023 record area burned in Canada
Year: 2024
In 2023, wildfires burned 15 million hectares in Canada, more than doubling the previous record. These wildfires caused a record number of evacuations, unprecedented air quality impacts across Canada and the northeastern United States, and substantial strain on fire management resources. Using climate models, we show that human-induced climate change significantly increased the likelihood of area burned at least as large as in 2023 across most of Canada, with more than two-fold increases in the east and southwest. The long fire season was more than five times as likely and the large areas…
Publication Type: Journal Article
Constraints on Mechanical Fuel Reduction Treatments in United States Forest Service Wildfire Crisis Strategy Priority Landscapes
Year: 2024
The USDA Forest Service recently launched a Wildfire Crisis Strategy outlining objectives to safeguard communities and other values at risk by substantially increasing the pace and scale of fuel reduction treatment. This analysis quantified layered operational constraints to mechanical fuel reduction treatments, including existing vegetation, protected areas, steep slopes, and administrative boundaries in twenty-one prioritized landscapes. Results suggest that achieving the objective to treat 20%–40% of high-risk area is unlikely in most landscapes under a business-as-usual approach to…
Publication Type: Journal Article
Maximizing opportunities for co-implementing fuel break networks and restoration projects
Year: 2024
Increasing impacts from wildfires are reshaping fire policies worldwide, with expanded investments in a wide range of fuel reduction strategies. In many fire prone regions, especially in the Mediterranean basin, fuel management programs have relied on fuel break networks for decades to facilitate fire suppression and reduce area burned and damage. By contrast, on the fire prone federal forests in the western United States, fuel management is guided primarily by landscape restoration goals, including improving fire resiliency such that wildfires can be managed for ecological benefit, and…
Publication Type: Journal Article
Managed burning of forests: Balancing economic incentives, risks, and liability
Year: 2024
Managed burning of forests can provide benefits to society including mitigated wildfire risk, improved habitat, and more. However, adverse outcomes of escaped fire or smoke pose risks. I reviewed the evolution of the law regulating forest management burns, explored the current legal architecture, and analyzed the economic incentives for involved actors, in order to identify policy options. Liability standards through most of the twentieth century increasingly placed risk burden on landowners and burners, but increased recognition of the benefits of burns led many States to reverse this trend…
Publication Type: Journal Article
Prescribed fire placement matters more than increasing frequency and extent in a simulated Pacific Northwest landscape
Year: 2024
Prescribed fire has been increasingly promoted to reduce wildfire risk and restore fire-adapted ecosystems. Yet, the complexities of forest ecosystem dynamics in response to disturbances, climate change, and drought stress, combined with myriad social and policy barriers, have inhibited widespread implementation. Using the forest succession model LANDIS-II, we investigated the likely impacts of increasing prescribed fire frequency and extent on wildfire severity and forest carbon storage at local and landscape scales. Specifically, we ask how much prescribed fire is required to maintain…
Publication Type: Journal Article
Visibility-informed mapping of potential firefighter lookout locations using maximum entropy modelling
Year: 2024
BackgroundSituational awareness is an essential component of wildland firefighter safety. In the US, crew lookouts provide situational awareness by proxy from ground-level locations with visibility of both fire and crew members.AimsTo use machine learning to predict potential lookout locations based on incident data, mapped visibility, topography, vegetation, and roads.MethodsLidar-derived topographic and fuel structural variables were used to generate maps of visibility across 30 study areas that possessed lookout location data. Visibility…
Publication Type: Journal Article
Multiple social and environmental factors affect wildland fire response of full or less-than-full suppression
Year: 2024
Wildland fire incident commanders make wildfire response decisions within an increasingly complex socio-environmental context. Threats to human safety and property, along with public pressures and agency cultures, often lead commanders to emphasize full suppression. However, commanders may use less-than-full suppression to enhance responder safety, reduce firefighting costs, and encourage beneficial effects of fire. This study asks: what management, socioeconomic, environmental, and fire behavior characteristics are associated with full suppression and the less-than-full suppression methods…
Publication Type: Journal Article
Trends in prescribed fire weather windows from 2000 to 2022 in California
Year: 2024
As increasing wildfire activity puts pressure on wildland fire suppression resources both nationally and within the state of California, further development of programs and infrastructure that emphasize preventative fuels treatments, e.g. prescribed burning, is critical for mitigating the impacts of wildfire at large spatial scales. Among many factors that limit the use of prescribed fire, weather and fuel moisture conditions are among the most critical. We analyzed a 2-km gridded hourly surface weather dataset over a 23-yr period to explore the relationship between climatological trends and…
Publication Type: Journal Article
Assessing Conservation Readiness: The Where, Who, and How of Strategic Conservation in the Sagebrush Biome
Year: 2024
The sagebrush biome is rapidly deteriorating largely due to the ecosystem threats of conifer expansion, more frequent and larger wildfires, and proliferation of invasive annual grasses. Reversing the impacts of these threats is a formidable challenge. The Sagebrush Conservation Design (SCD) emphasized that limited conservation resources should first be used to maintain Core Sagebrush Areas (CSA), and then to grow such areas where possible. The SCD heightens the ecological importance of maintaining and strategically growing CSAs. However, the fact that these areas have been identified does not…
Publication Type: Journal Article