Research Database
Displaying 1 - 20 of 225
Wildland fire entrainment: The missing link between wildland fire and its environment
Year: 2025
Wildfires are growing in destructive power, and accurately predicting the spread and intensity of wildland fire is essential for managing ecological and societal impacts. No current operational models used for fire behavior prediction resolve critical fire-atmospheric coupling or nonlocal influences of the fire environment, rendering them inadequate in accounting for the range of wildland fire behavior scenarios under increasingly novel fuel and climate conditions. Here, we present a new perspective on a dominant fire-atmospheric feedback mechanism, which we term wildland fire entrainment (…
Publication Type: Journal Article
Prescribed fire, managed burning, and previous wildfires reduce the severity of a southwestern US gigafire
Year: 2025
In many parts of the western United States, wildfires are becoming larger and more severe, threatening the persistence of forest ecosystems. Understanding the ways in which management activities such as prescribed fire and managed wildfire can mitigate fire severity is essential for developing effective forest conservation strategies. We evaluated the effects of previous fuels reduction treatments, including prescribed fire and wildfire managed for resource benefit, and other wildfires on the burn severity of the 2022 Black Fire in southwestern New Mexico, USA. The Black Fire burned over 131,…
Publication Type: Journal Article
Fire Intensity and spRead forecAst (FIRA): A Machine Learning Based Fire Spread Prediction Model for Air Quality Forecasting Application
Year: 2025
Fire activities introduce hazardous impacts on the environment and public health by emitting various chemical species into the atmosphere. Most operational air quality forecast (AQF) models estimate smoke emissions based on the latest available satellite fire products, which may not represent real-time fire behaviors without considering fire spread. Hence, a novel machine learning (ML) based fire spread forecast model, the Fire Intensity and spRead forecAst (FIRA), is developed for AQF model applications. FIRA aims to improve the performance of AQF models by providing realistic, dynamic fire…
Publication Type: Journal Article
Short-term impacts of operational fuel treatments on modelled fire behaviour and effects in seasonally dry forests of British Columbia, Canada
Year: 2025
Background: In response to increasing risk of extreme wildfire across western North America, forest managers are proactively implementing fuel treatments.Aims: We assessed the efficacy of alternative combinations of thinning, pruning and residue fuel management to mitigate potential fire behaviour and effects in seasonally dry forests of interior British Columbia, Canada.Methods: Across five community forests, we measured stand attributes before and after fuel treatments in 2021 and 2022, then modelled fire behaviour and effects using the…
Publication Type: Journal Article
Long-term influence of prescribed burning on subsequent wildfire in an old-growth coast redwood forest
Year: 2025
Background: Prescribed burning is an effective tool for reducing fuels in many forest types, yet there have been few opportunities to study forest resilience to wildfire in areas previously treated. In 2020, a large-scale high-intensity wildfire burned through an old-growth coast redwood (Sequoia sempervirens) forest with a mixed land management history, providing a rare opportunity to compare early post-wildfire data between areas with and without previous application of prescribed burning. The purpose of this study was to analyze the differences between these two treatments in…
Publication Type: Journal Article
The 2023 wildfires in British Columbia, Canada: impacts, drivers, and transformations to coexist with wildfire
Year: 2025
In 2023, all regions of British Columbia (BC) experienced record-breaking fire weather and wildfires, with extreme behavior and social-ecological effects. In total, 2245 wildfires burned 2840 545 hectares. Contemporary wildfires are the culmination of a century of altered human–forest–wildfire relationships, exacerbated by climate change. Transformative change is urgently needed for the ecosystems and communities to be resilient to wildfire. We present six interrelated strategies needed to amplify the pace and scale of change in response to recent wildfire extremes: (1) Immediately diversify…
Publication Type: Journal Article
Enhancing fire emissions inventories for acute health effects studies: integrating high spatial and temporal resolution data
Year: 2025
Background: Daily fire progression information is crucial for public health studies that examine the relationship between population-level smoke exposures and subsequent health events. Issues with remote sensing used in fire emissions inventories (FEI) lead to the possibility of missed exposures that impact the results of acute health effects studies.Aims: This paper provides a method for improving an FEI dataset with readily available information to create a more robust dataset with daily fire progression.Methods: High temporal and spatial resolution burned area information from two FEI…
Publication Type: Journal Article
Enhancing fire emissions inventories for acute health effects studies: integrating high spatial and temporal resolution data
Year: 2025
Background: Daily fire progression information is crucial for public health studies that examine the relationship between population-level smoke exposures and subsequent health events. Issues with remote sensing used in fire emissions inventories (FEI) lead to the possibility of missed exposures that impact the results of acute health effects studies.Aims: This paper provides a method for improving an FEI dataset with readily available information to create a more robust dataset with daily fire progression.Methods: High temporal and spatial…
Publication Type: Journal Article
Prescribed fire, managed burning, and previous wildfires reduce the severity of a southwestern US gigafire
Year: 2025
In many parts of the western United States, wildfires are becoming larger and more severe, threatening the persistence of forest ecosystems. Understanding the ways in which management activities such as prescribed fire and managed wildfire can mitigate fire severity is essential for developing effective forest conservation strategies. We evaluated the effects of previous fuels reduction treatments, including prescribed fire and wildfire managed for resource benefit, and other wildfires on the burn severity of the 2022 Black Fire in southwestern New Mexico, USA. The Black Fire burned over 131,…
Publication Type: Journal Article
Evaluating a simulation-based wildfire burn probability map for the conterminous US
Year: 2025
Background: Wildfire simulation models are used to derive maps of burn probability (BP) based on fuels, weather, topography and ignition locations, and BP maps are key components of wildfire risk assessments.Aims: Few studies have compared BP maps with real-world fires to evaluate their suitability for near-future risk assessment. Here, we evaluated a BP map for the conterminous US based on the large fire simulation model FSim.Methods: We compared BP with observed wildfires from 2016 to 2022 across 128 regions representing similar fire regimes (‘pyromes’). We…
Publication Type: Journal Article
Comparing modeled soil temperature and moisture dynamics during prescribed fires, slash-pile burns and wildfires
Year: 2025
Background: Wildfires, prescribed fires and slash-pile burns are disturbances that occur in many terrestrial ecosystems. Such fires produce variable surface heat fluxes causing a spectrum of effects on soil, such as seed mortality, nutrient loss, changes in microbial activity and water repellency. Accurately modeling soil heating is vital to predicting these second-order fire effects. The process-based Massman HMV (Heat–Moisture–Vapor) model incorporates soil water evaporation, heat transport and water vapor movement, and captures the observed rapid evaporation of soil moisture. Aims:…
Publication Type: Journal Article
Modeling the probability of bark beetle-caused tree mortality as a function of watershed-scale host species presence and basal area
Year: 2025
In recent decades, bark beetle outbreaks have caused mass tree mortality in western US forests, which has led to altered wildfire characteristics, hydrological processes, and forest carbon dynamics. Understanding spatial variability in forest susceptibility to bark beetle outbreaks in the western US could inform strategic forest management to reduce wildfire risk, manage forest carbon, and plan for altered hydrology. The susceptibility of a forest stand to mortality by bark beetles depends on the availability and characteristics of trees of the host tree species. For multiple bark beetle…
Publication Type: Journal Article
Can ‘‘Fire Safe’’ Cigarettes (FSCs) Start Wildfires?
Year: 2025
Over the last 20 years, all states within the US have required all cigarettes sold to be ‘‘fire safe’’ or ‘‘fire standards compliant’’ meaning that they must pass ASTM standard E2187. Though these cigarettes are designed to self-extinguish, there have been recent studies suggesting that these ‘‘fire safe’’ cigarettes (FSCs) can still ignite mattresses and other furnishings, but there has been no guidance for fire investigators whether FSCs can ignite natural fuels, such as duff and needles, that can be the source of a wildland fire. This work sets out to investigate whether FSCs can indeed be…
Publication Type: Journal Article
Equity in resilience: a case study of community resilience to wildfire in southwestern Oregon, United States
Year: 2025
In the fire-prone and fire-adapted landscape of the Rogue River Basin of southwestern Oregon, communities mobilize to prepare, respond, and recover from wildfire while modifying the current social and ecological system. Marginalized communities are often most affected and least prepared for disturbances of this kind, where racism, colonialism, and structural equities prevent meaningful inclusion and equitable allocation of resources. This research centers these voices in an empirical study of the situated resilience of the Rogue River Basin, rooted in the work of community-based organizations…
Publication Type: Journal Article
Predicting daily firefighting personnel deployment trends in the western United States
Year: 2024
Projected increases in wildfire frequency, size, and severity may further stress already scarce firefighting resources in the western United States that are in high demand. Machine learning is a promising field with the ability to model firefighting resource usage without compromising dataset size or complexity. In this study, the Categorical Boosting (CatBoost) model was used with historical (2012-2020) wildfire data to train three models that calculate predicted daily counts of 1) total assigned personnel (total personnel), 2) assigned personnel that are at the fire (ground personnel), and…
Publication Type: Journal Article
Improving social resilience to forest fire from community perspective
Year: 2024
Recently, terms like social and community resilience have provided new ideas in reducing disaster risks especially in forest fire. However, a comprehensive and in-depth review of community social resilience concerning forest fires is lacking. There is little research investigate whether certain social or community resilience factors can initiate forest fires or whether forest fire prevention positively be influenced by them. To fill this gap, this paper aims to identify and discuss the factors influencing the occurrence of forest fires in the scope of community social resilience. It also…
Publication Type: Journal Article
Prescribed fire placement matters more than increasing frequency and extent in a simulated Pacific Northwest landscape
Year: 2024
Prescribed fire has been increasingly promoted to reduce wildfire risk and restore fire-adapted ecosystems. Yet, the complexities of forest ecosystem dynamics in response to disturbances, climate change, and drought stress, combined with myriad social and policy barriers, have inhibited widespread implementation. Using the forest succession model LANDIS-II, we investigated the likely impacts of increasing prescribed fire frequency and extent on wildfire severity and forest carbon storage at local and landscape scales. Specifically, we ask how much prescribed fire is required to maintain…
Publication Type: Journal Article
Restoring frequent fire to dry conifer forests delays the decline of subalpine forests in the southwest United States under projected climate
Year: 2024
- In southwestern US forests, the combined impact of climate change and increased fuel loads due to more than a century of human-caused fire exclusion is leading to larger and more severe wildfires. Restoring frequent fire to dry conifer forests can mitigate high-severity fire risk, but the effects of these treatments on the vegetation composition and structure under projected climate change remain uncertain.
- We used a forest landscape model to assess the impact of thinning and prescribed burns in dry conifer forests across an elevation gradient, encompassing low-elevation…
Fire Effects and Fire Ecology, Fire History, Mixed-Conifer Management, Prescribed Burning, Restoration and Hazardous Fuel Reduction
Publication Type: Journal Article
Patterns, drivers, and implications of postfire delayed tree mortality in temperate conifer forests of the western United States
Year: 2024
Conifer forest resilience may be threatened by increasing wildfire activity and compound disturbances in western North America. Fire refugia enhance forest resilience, yet may decline over time due to delayed mortality—a process that remains poorly understood at landscape and regional scales. To address this uncertainty, we used high-resolution satellite imagery (5-m pixel) to map and quantify delayed mortality of conifer tree cover between 1 and 5 years postfire, across 30 large wildfires that burned within three montane ecoregions in the western United States. We used statistical models to…
Publication Type: Journal Article
An optimization model to prioritize fuel treatments within a landscape fuel break network
Year: 2024
We present a mixed integer programming model for prioritizing fuel treatments within a landscape fuel break network to maximize protection against wildfires, measured by the total fire size reduction or the sum of Wildland Urban Interface areas avoided from burning. This model uses a large dataset of simulated wildfires in a large landscape to inform fuel break treatment decisions. Its mathematical formulation is concise and computationally efficient, allowing for customization and expansion to address more complex and challenging fuel break management problems in diverse landscapes. We…
Publication Type: Journal Article