Research Database
Displaying 81 - 100 of 179
Should we leave now? Behavioral factors in evacuation under wildfire threat
Year: 2019
Wildfires pose a serious threat to life in many countries. For police, fire and emergency services authorities in most jurisdictions in North America and Australia evacuation is now the option that is preferred overwhelmingly. Wildfire evacuation modeling can assist authorities in planning evacuation responses to future threats. Understanding residents' behavior under wildfire threat may assist in wildfire evacuation modeling. This paper reviews North American and Australian research into wildfire evacuation behavior published between January 2005 and June 2017. Wildfire evacuation policies…
Publication Type: Journal Article
Not all Fuel-Reduction Treatments Degrade Biocrusts: Herbicides Cause Mostly Neutral to Positive Effects on Cover of Biocrusts
Year: 2019
In response to increasing fire, fuel-reduction treatments are being used to minimize large fire risk. Although biocrusts are associated with reduced cover of fire-promoting, invasive grasses, the impact of fuel-reduction treatments on biocrusts is poorly understood. We use data from a long-term experiment, the Sagebrush Steppe Treatment Evaluation Project, testing the following fuel-reduction treatments: mowing, prescribed fire, and the use of two herbicides: one commonly used to reduce shrub cover, tebuthiuron, and one commonly used to combat cheatgrass, imazapic. Looking at sites with high…
Publication Type: Journal Article
Near-future forest vulnerability to drought and fire varies across the western United States
Year: 2019
Recent prolonged droughts and catastrophic wildfires in the western United States have raised concerns about the potential for forest mortality to impact forest structure, forest ecosystem services, and the economic vitality of communities in the coming decades. We used the Community Land Model (CLM) to determine forest vulnerability to mortality from drought and fire by the year 2049. We modified CLM to represent 13 major forest types in the western United States and ran simulations at a 4‐km grid resolution, driven with climate projections from two general circulation models under one…
Publication Type: Journal Article
Designing Operationally Relevant Daily Large Fire Containment Strategies Using Risk Assessment Results
Year: 2019
In this study, we aim to advance the optimization of daily large fire containment strategies for ground-based suppression resources by leveraging fire risk assessment results commonly used by fire managers in the western USA. We begin from an existing decision framework that spatially overlays fire risk assessment results with pre-identified potential wildland fire operational delineations (PODs), and then clusters PODs into a response POD (rPOD) using a mixed integer program (MIP) model to minimize expected loss. We improve and expand upon this decision framework through enhanced fire…
Publication Type: Journal Article
Key Findings and Messages from the Go Big or Go Home? Project
Year: 2018
About Go Big or Go Home?: The goals of this research project were to analyze how public land managers and stakeholders in Oregon’s east Cascades can plan and manage at landscape scales using scientific research and participatory simulation modeling (Envision). To learn more, visit: gbgh.forestry.oregonstate.edu
Publication Type: Report
The Weather Conditions for Desired Smoke Plumes at a FASMEE Burn Site
Year: 2018
Weather is an important factor that determines smoke development, which is essential information for planning smoke field measurements. This study identifies the synoptic systems that would favor to produce the desired smoke plumes for the Fire and Smoke Model Evaluation Experiment (FASMEE). Daysmoke and PB-Piedmont (PB-P) models are used to simulate smoke plume evolution during the day time and smoke drainage and fog formation during the nighttime for hypothetical prescribed burns on 5–8 February 2011 at the Stewart Army Base in the southeastern United States. Daysmoke simulation is…
Publication Type: Journal Article
Fire and tree death: understanding and improving modeling of fire-induced tree mortality
Year: 2018
Each year wildland fires kill and injure trees on millions of forested hectares globally, affecting plant and animal biodiversity, carbon storage, hydrologic processes, and ecosystem services. The underlying mechanisms of fire-caused tree mortality remain poorly understood, however, limiting the ability to accurately predict mortality and develop robust modeling applications, especially under novel future climates. Virtually all post-fire tree mortality prediction systems are based on the same underlying empirical model described in Ryan and Reinhardt (1988 Can. J. For. Res. 18 1291–7), which…
Publication Type: Journal Article
Forest Service Managers' Perception of Landscapes and Computer Models
Year: 2018
About Go Big or Go Home?: The goals of this research project were to analyze how public land managers and stakeholders in Oregon’s east Cascades can plan and manage at landscape scales using scientific research and participatory simulation modeling (Envision). To learn more, visit: gbgh.forestry.oregonstate.edu
Publication Type: Report
Tree traits influence response to fire severity in the western Oregon Cascades, USA
Year: 2018
Wildfire is an important disturbance process in western North American conifer forests. To better understand forest response to fire, we used generalized additive models to analyze tree mortality and long-term (1 to 25 years post-fire) radial growth patterns of trees that survived fire across a burn severity gradient in the western Cascades of Oregon. We also used species-specific leaf-area models derived from sapwood estimates to investigate the linkage between photosynthetic capacity and growth response. Larger trees and shade intolerant trees had a higher probability of surviving fire.…
Publication Type: Journal Article
Landscapes 101: Understanding Landscape Approaches to Forest Restoration and Management
Year: 2018
About Go Big or Go Home?: The goals of this research project were to analyze how public land managers and stakeholders in Oregon’s east Cascades can plan and manage at landscape scales using scientific research and participatory simulation modeling (Envision). To learn more, visit: gbgh.forestry.oregonstate.edu
Publication Type: Report
Advancing the Science of Wildland Fire Dynamics Using Process-Based Models
Year: 2018
As scientists and managers seek to understand fire behavior in conditions that extend beyond the limits of our current empirical models and prior experiences, they will need new tools that foster a more mechanistic understanding of the processes driving fire dynamics and effects. Here we suggest that process-based models are powerful research tools that are useful for investigating a large number of emerging questions in wildland fire sciences. These models can play a particularly important role in advancing our understanding, in part, because they allow their users to evaluate the potential…
Publication Type: Journal Article
Long-Term Effects of Fire on Vegetation Structure and Predicted Fire Behavior in Wyoming Big Sagebrush Ecosystems
Year: 2018
Fire historically occurred across the sagebrush steppe, but little is known about how patterns of post-fire fuel accumulation influence future fire in Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis) communities. To quantify change in fuel composition and structure in intact sagebrush ecosystems, we sampled 17 years following prescribed fire in eight approximately 400 ha plots (4 burned, 4 unburned control) at Hart Mountain National Antelope Refuge, OR, USA. Fuels data were used to model potential fire behavior in burn and control plots across four environmental scenarios that…
Publication Type: Journal Article
Science and Collaborative Processes
Year: 2018
About Go Big or Go Home?: The goals of this research project were to analyze how public land managers and stakeholders in Oregon’s east Cascades can plan and manage at landscape scales using scientific research and participatory simulation modeling (Envision). To learn more, visit: gbgh.forestry.oregonstate.edu
Publication Type: Report
The normal fire environment—Modeling environmental suitability for large forest wildfires using past, present, and future climate normals
Year: 2017
We modeled the normal fire environment for occurrence of large forest wildfires (>40 ha) for the Pacific Northwest Region of the United States. Large forest wildfire occurrence data from the recent climate normal period (1971–2000) was used as the response variable and fire season precipitation, maximum temperature, slope, and elevation were used as predictor variables. A projection of our model onto the 2001–2030 climate normal period showed strong agreement between model predictions and the area of forest burned by large wildfires from 2001 to 2015 (independent fire data). We then used…
Publication Type: Journal Article
Using an agent-based model to examine forest management outcomes in a fire-prone landscape in Oregon, USA.
Year: 2017
Fire-prone landscapes present many challenges for both managers and policy makers in developing adaptive behaviors and institutions. We used a coupled human and natural systems framework and an agent-based landscape model to examine how alternative management scenarios affect fire and ecosystem services metrics in a fire-prone multiownership landscape in the eastern Cascades of Oregon. Our model incorporated existing models of vegetation succession and fire spread and information from original empirical studies of landowner decision making. Our findings indicate that alternative management…
Publication Type: Journal Article
Fall and spring grazing influence fire ignitability and initial spread in shrub steppe communities
Year: 2017
The interaction between grazing and fire influences ecosystems around the world. However, little is known about the influence of grazing on fire, in particular ignition and initial spread and how it varies by grazing management differences. We investigated effects of fall (autumn) grazing, spring grazing and not grazing on fuel characteristics, fire ignition and initial spread during the wildfire season (July and August) at five shrub steppe sites in Oregon, USA. Both grazing treatments decreased fine fuel biomass, cover and height, and increased fuel moisture, and thereby decreased ignition…
Publication Type: Journal Article
Effects of accelerated wildfire on future fire regimes and implications for the United States federal fire policy
Year: 2017
Wildland fire suppression practices in the western United States are being widely scrutinized by policymakers and scientists as costs escalate and large fires increasingly affect social and ecological values. One potential solution is to change current fire suppression tactics to intentionally increase the area burned under conditions when risks are acceptable to managers and fires can be used to achieve long-term restoration goals in fire adapted forests. We conducted experiments with the Envision landscape model to simulate increased levels of wildfire over a 50-year period on a 1.2 million…
Publication Type: Journal Article
A LiDAR-based analysis of the effects of slope, vegetation density, and ground surface roughness on travel rates for wildland firefighter escape route mapping
Year: 2017
Escape routes are essential components of wildland firefighter safety, providing pre-defined pathways to a safety zone. Among the many factors that affect travel rates along an escape route, landscape conditions such as slope, low-lying vegetation density, and ground surface roughness are particularly influential, and can be measured using airborne light detection and ranging (LiDAR) data. In order to develop a robust, quantitative understanding of the effects of these landscape conditions on travel rates, we performed an experiment wherein study participants were timed while walking along a…
Publication Type: Journal Article
Mortality predictions of fire-injured large Douglas-fir and ponderosa pine in Oregon and Washington, USA
Year: 2017
Wild and prescribed fire-induced injury to forest trees can produce immediate or delayed tree mortality but fire-injured trees can also survive. Land managers use logistic regression models that incorporate tree-injury variables to discriminate between fatally injured trees and those that will survive. We used data from 4024 ponderosa pine (Pinus ponderosa Dougl. ex Laws.) and 3804 Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees from 23 fires across Oregon and Washington to assess the discriminatory ability of 21 existing logistic regression models and a polychotomous key (Scott…
Publication Type: Journal Article
Climate change and the eco-hydrology of fire: will area burned increase in a warming western USA?
Year: 2017
Wildfire area is predicted to increase with global warming. Empirical statistical models and process-based simulations agree almost universally. The key relationship for this unanimity, observed at multiple spatial and temporal scales, is between drought and fire. Predictive models often focus on ecosystems in which this relationship appears to be particularly strong, such as mesic and arid forests and shrublands with substantial biomass such as chaparral. We examine the drought-fire relationship, specifically the correlations between water-balance deficit and annual area burned, across the…
Publication Type: Journal Article
Pagination
- First page
- Previous page
- …
- 3
- 4
- 5
- 6
- 7
- …
- Next page
- Last page