Research Database
Displaying 1 - 7 of 7
Restoring forest resilience: From reference spatial patterns to silvicultural prescriptions and monitoring
Year: 2013
Stand-level spatial pattern influences key aspects of resilience and ecosystem function such as disturbance behavior, regeneration, snow retention, and habitat quality in frequent-fire pine and mixed-conifer forests. Reference sites, from both pre-settlement era reconstructions and contemporary forests with active fire regimes, indicate that frequent-fire forests are complex mosaics of individual trees, tree clumps, and openings. There is a broad scientific consensus that restoration treatments should seek to restore this mosaic pattern in order to restore resilience and maintain ecosystem…
Publication Type: Journal Article
Managing Forests and Fire in Changing Climates
Year: 2013
With projected climate change, we expect to face much more forest fi re in the coming decades. Policymakers are challenged not to categorize all fires as destructive to ecosystems simply because they have long flame lengths and kill most of the trees within the fire boundary. Ecological context matters: In some ecosystems, high-severity regimes are appropriate, but climate change may modify these fire regimes and ecosystems as well. Some undesirable impacts may be avoided or reduced through global strategies, as well as distinct strategies based on a forest’s historical fire regime.
Publication Type: Report
Swiss Needle Cast
Year: 2013
Since the 1990s, there has been an epidemic of SNC affecting hundreds of thousands of acres of coastal Douglas-fir forests in Oregon, Washington and British Columbia. This constitutes one of the largest foliage-disease epidemics of conifers in North America. SNC is also a localized problem in many inland areas of the west, especially in Montana, Idaho, British Columbia, Washington, and Oregon.
Publication Type: Report
A Land Manager's Guide for Creating Fire-resistant Forests
Year: 2013
This publication provides an overview of how various silvicultural treatments affect fuel and fire behavior, and how to create fire-resistant forests. In properly treated, fire-resistant forests, fire intensity is reduced and overstory trees are more likely to survive than in untreated forests. Fire-resistant forests are not “fireproof” – under the right conditions, any forest will burn. Much of what we present here is pertinent to the drier forests of the Pacific Northwest, which have become extremely dense and fire prone.
Publication Type: Report
Assessing forest vegetation and fire simulation model performance after the Cold Springs wildfire, Washington, USA
Year: 2013
Given that resource managers rely on computer simulation models when it is difficult or expensive to obtain vital information directly, it is important to evaluate how well a particular model satisfies applications for which it is designed. The Forest Vegetation Simulator (FVS) is used widely for forest management in the US, and its scope and complexity continue to increase. This paper focuses on the accuracy of estimates made by the Fire and Fuels Extension (FFE-FVS) predictions through comparisons between model outputs and measured post-fire conditions for the Cold Springs wildfire and on…
Publication Type: Journal Article
Pre-wildfire fuel reduction treatments result in more resilient forest structure a decade after wildfire
Year: 2013
Increasing size and severity of wildfires have led to an interest in the effectiveness of forest fuels treatments on reducing fire severity and post-wildfire fuels. Our objective was to contrast stand structure and surface fuel loadings on treated and untreated sites within the 2002 Rodeo-Chediski Fire area. Data from 140 plots on seven paired treated-untreated sites indicated that pre-wildfire treatments reduced fire severity compared with untreated sites. In 2011, coarse woody debris loading (woody material.7.62 cm in diameter) was 257% higher and fine woody debris (woody material,7.62 cm)…
Publication Type: Journal Article