Research Database
Displaying 41 - 60 of 95
Short- and long-term effects of ponderosa pine fuel treatments intersected by the Egley Fire Complex, Oregon, USA
Year: 2019
Background Fuel treatments are widely used to alter fuels in forested ecosystems to mitigate wildfire behavior and effects. However, few studies have examined long-term ecological effects of interacting fuel treatments (commercial harvests, pre-commercial thinnings, pile and burning, and prescribed fire) and wildfire. Using annually fitted Landsat satellite-derived Normalized Burn Ratio (NBR) curves and paired pre-fire treated and untreated field sites, we tested changes in the differenced NBR (dNBR) and years since treatment as predictors of biophysical attributes one and nine years after…
Publication Type: Journal Article
Influence of fire refugia spatial pattern on post-fire forest recovery in Oregon’s Blue Mountains
Year: 2019
Context Fire regimes in many dry forests of western North America are substantially different from historical conditions, and there is concern about the ability of these forests to recover following severe wildfire. Fire refugia, unburned or low-severity burned patches where trees survived fire, may serve as essential propagule sources that enable forest regeneration. Objectives To quantify the influence of fire refugia spatial pattern and other biophysical factors on the process of post-fire tree regeneration; in particular examining both the proximity and density of surrounding refugia to…
Publication Type: Journal Article
It takes a few to tango: changing climate and fire regimes can cause regeneration failure of two subalpine conifers
Year: 2018
Environmental change is accelerating in the 21st century, but how multiple drivers may interact to alter forest resilience remains uncertain. In forests affected by large high-severity disturbances, tree regeneration is a resilience linchpin that shapes successional trajectories for decades. We modeled stands of two widespread western U.S. conifers, Douglas-fir (Pseudotsuga menziesii var. glauca), and lodgepole pine (Pinus contorta var. latifolia), in Yellowstone National Park (Wyoming, USA) to ask (1) What combinations of distance to seed source, fire return interval, and warming-drying…
Publication Type: Journal Article
Evidence for declining forest resilience to wildfires under climate change
Year: 2018
Forest resilience to climate change is a global concern given the potential effects of increased disturbance activity, warming temperatures and increased moisture stress on plants. We used a multi-regional dataset of 1485 sites across 52 wildfires from the US Rocky Mountains to ask if and how changing climate over the last several decades impacted post-fire tree regeneration, a key indicator of forest resilience. Results highlight significant decreases in tree regeneration in the 21st century. Annual moisture deficits were significantly greater from 2000 to 2015 as compared to 1985–1999,…
Publication Type: Journal Article
Recovery of ectomycorrhizal fungus communities fifteen years after fuels reduction treatments in ponderosa pine forests of the Blue Mountains, Oregon
Year: 2018
Managers use restorative fire and thinning for ecological benefits and to convert fuel-heavy forests to fuel-lean landscapes that lessen the threat of stand-replacing wildfire. In this study, we evaluated the long-term impact of thinning and prescribed fire on soil biochemistry and the mycorrhizal fungi associated with ponderosa pine (Pinus ponderosa). Study sites were located in the Blue Mountains of northeastern Oregon where prescribed fire treatments implemented in 1998 and thinning treatments in 2000 included prescribed fire, mechanical thinning of forested areas, a combination of…
Publication Type: Journal Article
Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity
Year: 2018
Fire frequency is changing globally and is projected to affect the global carbon cycle and climate. However, uncertainty about how ecosystems respond to decadal changes in fire frequency makes it difficult to predict the effects of altered fire regimes on the carbon cycle; for instance, we do not fully understand the long-term effects of fire on soil carbon and nutrient storage, or whether fire-driven nutrient losses limit plant productivity. Here we analyse data from 48 sites in savanna grasslands, broadleaf forests and needleleaf forests spanning up to 65 years, during which time the…
Publication Type: Journal Article
Pyro-Ecophysiology: Shifting the Paradigm of Live Wildland Fuel Research
Year: 2018
The most destructive wildland fires occur in mixtures of living and dead vegetation, yet very little attention has been given to the fundamental differences between factors that control their flammability. Historically, moisture content has been used to evaluate the relative flammability of live and dead fuels without considering major, unreported differences in the factors that control their variations across seasons and years. Physiological changes at both the leaf and whole plant level have the potential to explain ignition and fire behavior phenomena in live fuels that have been poorly…
Publication Type: Journal Article
The influence of fire history on soil nutrients and vegetation cover in mixed-severity fire regime forests of the eastern Olympic Peninsula, Washington, USA
Year: 2018
The rain shadow forests of the Olympic Peninsula exemplify a mixed-severity fire regime class in the midst of a highly productive landscape where spatial heterogeneity of fire severity may have significant implications for below and aboveground post-fire recovery. The purpose of this study was to quantify the impacts of wildfire on forest soil carbon (C) and nitrogen (N) pools and assess the relationship of pyrogenic carbon (PyC) to soil processes in this mixed-severity ecosystem. We established a 112-year fire chronosequence with nine similar forest stands ranging in time since lastfire (TSF…
Publication Type: Journal Article
Emissions from prescribed burning of timber slash piles in Oregon
Year: 2017
Emissions from burning piles of post-harvest timber slash (Douglas-fir) in Grande Ronde, Oregon were sampled using an instrument platform lofted into the plume using a tether-controlled aerostat or balloon. Emissions of carbon monoxide, carbon dioxide, methane, particulate matter (PM2.5), black carbon, ultraviolet absorbing PM, elemental/organic carbon, filter-based metals, polycyclic aromatic hydrocarbons (PAHs), polychlorinated dibenzodioxins/dibenzofurans (PCDD/PCDF), and volatile organic compounds (VOCs) were sampled to determine emission factors, the amount of pollutant formed per amount…
Publication Type: Journal Article
Burning the legacy? Influence of wildfire reburn on dead wood dynamics in a temperate conifer forest
Year: 2016
Dynamics of dead wood, a key component of forest structure, are not well described for mixed- severity fi re regimes with widely varying fi re intervals. A prominent form of such variation is when two stand- replacing fi res occur in rapid succession, commonly termed an early- seral “reburn.” These events are thought to strongly infl uence dead wood abundance in a regenerating forest, but this hypothesis has scarcely been tested. We measured dead wood following two overlapping wildfi res in coniferdominated forests of the Klamath Mountains, Oregon (USA), to assess whether reburning (15- yr…
Publication Type: Journal Article
Patterns of conifer regeneration following high severity wildfire in ponderosa pine - dominated forests of the Colorado Front Range
Year: 2016
Many recent wildfires in ponderosa pine (Pinus ponderosa Lawson & C. Lawson) - dominated forests of the western United States have burned more severely than historical ones, generating concern about forest resilience. This concern stems from uncertainty about the ability of ponderosa pine and other co-occurring conifers to regenerate in areas where no surviving trees remain. We collected post-fire conifer regeneration and other data within and surrounding five 11-18 year-old Colorado Front Range wildfires to examine whether high severity burn areas (i.e., areas without surviving trees)…
Publication Type: Journal Article
Forest management scenarios in a changing climate: trade-offs between carbon, timber, and old forest
Year: 2016
Balancing economic, ecological, and social values has long been a challenge in the forests of the Pacific Northwest, where conflict over timber harvest and old-growth habitat on public lands has been contentious for the past several decades. The Northwest Forest Plan, adopted two decades ago to guide management on federal lands, is currently being revised as the region searches for a balance between sustainable timber yields and habitat for sensitive species. In addition, climate change imposes a high degree of uncertainty on future forest productivity, sustainability of timber harvest,…
Publication Type: Journal Article
Restoring forest structure and process stabilizes forest carbon in wildfire-prone southwestern ponderosa pine forests
Year: 2016
Changing climate and a legacy of fire-exclusion have increased the probability of high-severity wildfire, leading to an increased risk of forest carbon loss in ponderosa pine forests in the southwestern USA. Efforts to reduce high-severity fire risk through forest thinning and prescribed burning require both the removal and emission of carbon from these forests, and any potential carbon benefits from treatment may depend on the occurrence of wildfire. We sought to determine how forest treatments alter the effects of stochastic wildfire events on the forest carbon balance. We modeled three…
Publication Type: Journal Article
Effects of harvest, fire, and pest/pathogen disturbances on the West Cascades ecoregion carbon balance
Year: 2015
Disturbance is a key influence on forest carbon dynamics, but the complexity of spatial and temporal patterns in forest disturbance makes it difficult to quantify their impacts on carbon flux over broad spatial domains.Here we used a time series of Landsat remote sensing images and a climate-driven carbon cycle process model to evaluate carbon fluxes at the ecoregion scale in western Oregon.
Publication Type: Journal Article
Fire enhances whitebark pine seedling establishment, survival, and growth
Year: 2015
Periodic fire is thought to improve whitebark pine (Pinus albicaulis Engelm.) regeneration by reducing competition and creating openings, but the mechanisms by which fire affects seedling establishment are poorly understood. I compared seedling vegetation production in adjacent sites, one last burned in 1880 and the other in 1988, to test the hypothesis that recent fire increases whitebark pine seedling growth. I experimentally tested effects of fire on seedling recruitment and growth by planting seeds in prescribed burned and nearby unburned sites. Experimental results showed nearly three…
Publication Type: Journal Article
Pile burning creates a fifty-year legacy of openings in regenerating lodgepole pine forests in Colorado
Year: 2015
Pile burning is a common means of disposing the woody residues of logging and for post-harvest site preparation operations, in spite of the practice’s potential negative effects. To examine the long-term implications of this practice we established a 50-year sequence of pile burns within recovering clear cuts in lodgepole pine forests. We compared tree, shrub and herbaceous plant abundance and documented indicators of soil degradation in openings where logging residue was piled and burned as part of post-harvest site preparation and the adjacent forests regenerating after clear cutting. We…
Publication Type: Journal Article
Mapping the daily progression of large wildland fires using MODIS active fire data
Year: 2014
High temporal resolution information on burnt area is needed to improve fire behaviour and emissions models. We used the Moderate Resolution Imaging Spectroradiometer (MODIS) thermal anomaly and active fire product (MO(Y)D14) as input to a kriging interpolation to derive continuous maps of the timing of burnt area for 16 large wildland fires. For each fire, parameters for the kriging model were defined using variogram analysis. The optimal number of observations used to estimate a pixel’s time of burning varied between four and six among the fires studied. The median standard error from…
Publication Type: Journal Article
Fire severity and tree regeneration following bark beetle outbreaks: the role of outbreak stage and burning conditions
Year: 2014
The degree to which recent bark beetle (Dendroctonus ponderosae) outbreaks may influence fire severity and postfire tree regeneration is of heightened interest to resource managers throughout western North America, but empirical data on actual fire effects are lacking. Outcomes may depend on burning conditions (i.e., weather during fire), outbreak severity, or intervals between outbreaks and subsequent fire. We studied recent fires that burned through green-attack/red-stage (outbreaks <3 years before fire) and gray-stage (outbreaks 3–15 years before fire) subalpine forests dominated by…
Publication Type: Journal Article
Clearcutting and high severity wildfire have comparable effects on growth of direct-seeded interior Douglas-fir
Year: 2014
The degree to which harvesting can achieve comparable beneficial effects to wildfire on seedling establishment is a key factor in understanding regeneration dynamics in dry interior forest ecosystems. We compared the capacity of harvesting versus wildfire to support establishment of directly-seeded interior Douglas-fir over a three-year period in the interior Douglas-fir biogeoclimatic zone of British Columbia. The mixed-severity McLure Fire of August 2003 affected over 26,000 hectares in the central British Columbia, Canada. Within the fire-affected area, we assessed growth performance in…
Publication Type: Journal Article
Wildland fire emissions, carbon, and climate: Modeling fuel consumption
Year: 2014
Fuel consumption specifies the amount of vegetative biomass consumed during wildland fire. It is a two-stage process of pyrolysis and combustion that occurs simultaneously and at different rates depending on the characteristics and condition of the fuel, weather, topography, and in the case of prescribed fire, ignition rate and pattern. Fuel consumption is the basic process that leads to heat absorbing emissions called greenhouse gas and other aerosol emissions that can impact atmospheric and ecosystem processes, carbon stocks, and land surface reflectance. It is a critical requirement for…
Publication Type: Journal Article