Research Database
Displaying 41 - 60 of 168
A model for rapid PM2.5 exposure estimates in wildfire conditions using routinely available data: rapidfire v0.1.3
Year: 2024
Urban smoke exposure events from large wildfires have become increasingly common in California and throughout the western United States. The ability to study the impacts of high smoke aerosol exposures from these events on the public is limited by the availability of high-quality, spatially resolved estimates of aerosol concentrations. Methods for assigning aerosol exposure often employ multiple data sets that are time-consuming to create and difficult to reproduce. As these events have gone from occasional to nearly annual in frequency, the need for rapid smoke exposure assessments has…
Publication Type: Journal Article
Informing proactive wildfire management that benefits vulnerable communities and ecological values
Year: 2024
- In response to mounting wildfire risks, land managers across the country will need to dramatically increase proactive wildfire management (e.g. fuel and forest health treatments). While human communities vary widely in their vulnerability to the impacts of fire, these discrepancies have rarely informed prioritizations for wildfire mitigation treatments. The ecological values and ecosystem services provided by forests have also typically been secondary considerations.
- To identify locations across the conterminous US where proactive wildfire management is likely to be effective…
Publication Type: Journal Article
A fast spectral recovery does not necessarily indicate post-fire forest recovery
Year: 2024
BackgroundClimate change has increased wildfire activity in the western USA and limited the capacity for forests to recover post-fire, especially in areas burned at high severity. Land managers urgently need a better understanding of the spatiotemporal variability in natural post-fire forest recovery to plan and implement active recovery projects. In burned areas, post-fire “spectral recovery”, determined by examining the trajectory of multispectral indices (e.g., normalized burn ratio) over time, generally corresponds with recovery of multiple post-fire vegetation types, including trees and…
Publication Type: Journal Article
Snow-cover remote sensing of conifer tree recovery in high-severity burn patches
Year: 2024
The number of large, high-severity wildfires has been increasing across the western United States over the last several decades. It is not fully understood how changes in the frequency of large, severe wildfires may impact the resilience of conifer forests, due to alterations in regeneration success or failure. Our research investigates 30 years of conifer recovery patterns within 34 high-severity wildfire complexes (1988–1991) of the Northern Rocky Mountains. We evaluate the capability of snow-cover Landsat to characterize conifer tree recolonization of high-severity burn patches. Snow-…
Publication Type: Journal Article
Probabilistic Forecasting of Lightning Strikes over the Continental USA and Alaska: Model Development and Verification
Year: 2024
Lightning is responsible for the most area annually burned by wildfires in the extratropical region of the Northern Hemisphere. Hence, predicting the occurrence of wildfires requires reliable forecasting of the chance of cloud-to-ground lightning strikes during storms. Here, we describe the development and verification of a probabilistic lightning-strike algorithm running on a uniform 20 km grid over the continental USA and Alaska. This is the first and only high-resolution lightning forecasting model for North America derived from 29-year-long data records. The algorithm consists of a large…
Publication Type: Journal Article
Blending Indigenous and western science: Quantifying cultural burning impacts in Karuk Aboriginal Territory
Year: 2024
The combined effects of Indigenous fire stewardship and lightning ignitions shaped historical fire regimes, landscape patterns, and available resources in many ecosystems globally. The resulting fire regimes created complex fire–vegetation dynamics that were further influenced by biophysical setting, disturbance history, and climate. While there is increasing recognition of Indigenous fire stewardship among western scientists and managers, the extent and purpose of cultural burning is generally absent from the landscape–fire modeling literature and our understanding of ecosystem processes and…
Publication Type: Journal Article
A fire-use decision model to improve the United States’ wildfire management and support climate change adaptation
Year: 2024
The US faces multiple challenges in facilitating the safe, effective, and proactive use of fire as a landscape management tool. This intentional fire use exposes deeply ingrained communication challenges and distinct but overlapping strategies of prescribed fire, cultural burning, and managed wildfire. We argue for a new conceptual model that is organized around ecological conditions, capacity to act, and motivation to use fire and can integrate and expand intentional fire use as a tool. This result emerges from more considered collaboration and communication of values and needs to address…
Publication Type: Journal Article
Human driven climate change increased the likelihood of the 2023 record area burned in Canada
Year: 2024
In 2023, wildfires burned 15 million hectares in Canada, more than doubling the previous record. These wildfires caused a record number of evacuations, unprecedented air quality impacts across Canada and the northeastern United States, and substantial strain on fire management resources. Using climate models, we show that human-induced climate change significantly increased the likelihood of area burned at least as large as in 2023 across most of Canada, with more than two-fold increases in the east and southwest. The long fire season was more than five times as likely and the large areas…
Publication Type: Journal Article
Avoided wildfire impact modeling with counterfactual probabilistic analysis
Year: 2023
Assessing the effectiveness and measuring the performance of fuel treatments and other wildfire risk mitigation efforts are challenging endeavors. Perhaps the most complicated is quantifying avoided impacts. In this study, we show how probabilistic counterfactual analysis can help with performance evaluation. We borrow insights from the disaster risk mitigation and climate event attribution literature to illustrate a counterfactual framework and provide examples using ensemble wildfire simulations. Specifically, we reanalyze previously published fire simulation data from fire-prone landscapes…
Publication Type: Journal Article
Less fuel for the next fire? Short-interval fire delays forest recovery and interacting drivers amplify effects
Year: 2023
As 21st-century climate and disturbance dynamics depart from historic baselines, ecosystem resilience is uncertain. Multiple drivers are changing simultaneously, and interactions among drivers could amplify ecosystem vulnerability to change. Subalpine forests in Greater Yellowstone (Northern Rocky Mountains, USA) were historically resilient to infrequent (100–300 year), severe fire. We sampled paired short-interval (<30-year) and long-interval (>125-year) post-fire plots most recently burned between 1988 and 2018 to address two questions: (1) How do short-interval fire, climate,…
Publication Type: Journal Article
An aridity threshold model of fire sizes and annual area burned in extensively forested ecoregions of the western USA
Year: 2023
Wildfire occurrence varies among regions and through time due to the long-term impacts of climate on fuel structure and short-term impacts on fuel flammability. Identifying the climatic conditions that trigger extensive fire years at regional scales can enable development of area burned models that are both spatially and temporally robust, which is crucial for understanding the impacts of past and future climate change. We identified region-specific thresholds in fire-season aridity that distinguish years with limited, moderate, and extensive area burned for 11 extensively forested ecoregions…
Publication Type: Journal Article
Climate and fire impacts on tree recruitment in mixed conifer forests in Northwestern Mexico and California
Year: 2023
Frequent-fire forests were once heterogeneous at multiple spatial scales, which contributed to their resilience to severe fire. While many studies have characterized historical spatial patterns in frequent-fire forests, fewer studies have investigated their temporal dynamics. We investigated the influences of fire and climate on the timing of conifer recruitment in old-growth Jeffrey pine-mixed conifer forests in the Sierra San Pedro Martir (SSPM) and the eastern slope of Sierra Nevada. Additionally, we evaluated the impacts of fire exclusion and recent climate change on recruitment levels…
Publication Type: Journal Article
Long-term mortality burden trends attributed to black carbon and PM2·5 from wildfire emissions across the continental USA from 2000 to 2020: a deep learning modelling study
Year: 2023
Background
Long-term improvements in air quality and public health in the continental USA were disrupted over the past decade by increased fire emissions that potentially offset the decrease in anthropogenic emissions. This study aims to estimate trends in black carbon and PM2·5 concentrations and their attributable mortality burden across the USA.
Methods
In this study, we derived daily concentrations of PM2·5 and its highly toxic black carbon component at a 1-km resolution in the USA from 2000 to 2020 via deep learning that integrated big data from satellites, models, and surface…
Publication Type: Journal Article
Patterns and drivers of early conifer regeneration following stand-replacing wildfire in Pacific Northwest (USA) temperate maritime forests
Year: 2023
Tree regeneration is a critical mechanism of forest resilience to stand-replacing wildfire (i.e., where fire results in >90 % tree mortality), and post-fire regeneration is a concern worldwide as the climate becomes warmer. Although post-fire tree regeneration has been relatively well-studied in fire-prone forests across western North America, it is less understood in fire regimes characterized by large patches of stand-replacing fire at long intervals, such as the nominally infrequent, high-severity fire regimes of the western Cascades of Washington and northern Oregon,…
Publication Type: Journal Article
Forecasting natural regeneration of sagebrush after wildfires using population models and spatial matching
Year: 2023
Context Addressing ecosystem degradation in the Anthropocene will require ecological restoration across large spatial extents. Identifying areas where natural regeneration will occur without direct resource investment will improve scalability of restoration actions. Objectives An ecoregion in need of large scale restoration is the Great Basin of the Western US, where increasingly large and frequent wildfires threaten ecosystem integrity and its foundational shrub species. We develop a framework to forecast where post-wildfire regeneration of sagebrush cover (Artemisia spp.) is likely to occur…
Publication Type: Journal Article
Exploring and Testing Wildfire Risk Decision-Making in the Face of Deep Uncertainty
Year: 2023
We integrated a mechanistic wildfire simulation system with an agent-based landscape change model to investigate the feedbacks among climate change, population growth, development, landowner decision-making, vegetative succession, and wildfire. Our goal was to develop an adaptable simulation platform for anticipating risk-mitigation tradeoffs in a fire-prone wildland–urban interface (WUI) facing conditions outside the bounds of experience. We describe how five social and ecological system (SES) submodels interact over time and space to generate highly variable alternative futures even within…
Publication Type: Journal Article
Performance of Fire Danger Indices and Their Utility in Predicting Future Wildfire Danger Over the Conterminous United States
Year: 2023
Predicting current and future wildfire frequency and size is central to wildfire control and management. Multiple fire danger indices (FDIs) that incorporate weather and fuel conditions have been developed and utilized to support wildfire predictions and risk assessment. However, the scale-dependent performance of individual FDIs remains poorly understood, which leads to large uncertainty in the estimated fire sizes under climate change. Here, we calculate four commonly used FDIs over the conterminous United States using high-resolution (4 km) climate and fuel data sets for the 1984–2019…
Publication Type: Journal Article
DUET - Distribution of Understory using Elliptical Transport: A mechanistic model of leaf litter and herbaceous spatial distribution based on tree canopy structure
Year: 2023
Heterogeneity in surface fuels produced by overstory trees and understory vegetation is a major driver of fire behavior and ecosystem dynamics. Previous attempts at predicting tree leaf and needle litter accumulation over time have been constrained in scope to probabilistic models that consider a limited number of key factors influencing tree litter dispersal patterns and decomposition processes. We present a mechanistic model for estimating variation in surface fuels called the Distribution of Understory using Elliptical Transport (DUET). DUET uses a pre-generated voxelated canopy array and…
Publication Type: Journal Article
Atmospheric turbulence and wildland fires: a review
Year: 2023
The behaviour of wildland fires and the dispersion of smoke from those fires can be strongly influenced by atmospheric turbulent flow. The science to support that assertion has developed and evolved over the past 100+ years, with contributions from laboratory and field observations, as well as modelling experiments. This paper provides a synthesis of the key laboratory- and field-based observational studies focused on wildland fire and atmospheric turbulence connections that have been conducted from the early 1900s through 2021. Included in the synthesis are reports of anecdotal…
Publication Type: Journal Article
Modeling Wildland Firefighters’ Assessments of Structure Defensibility
Year: 2023
In wildland–urban interface areas, firefighters balance wildfire suppression and structure protection. These tasks are often performed under resource limitations, especially when many structures are at risk. To address this problem, wildland firefighters employ a process called “structure triage” to prioritize structure protection based on perceived defensibility. Using a dataset containing triage assessments of thousands of structures within the Western US, we developed a machine learning model that can improve the understanding of factors contributing to assessed structure defensibility.…
Publication Type: Journal Article