Research Database
Displaying 1 - 18 of 18
Montane springs provide regeneration refugia after high-severity wildfire
Year: 2024
In the mountainous regions of the Western United States, increasing wildfire activity and climate change are putting forests at risk of regeneration failure and conversion to non-forests. During periods with unfavorable climatic conditions, locations that are suitable for post-fire tree regeneration (regeneration refugia) may be essential for forest recovery. These refugia could provide scattered islands of recovering forest from which broader forest recovery may be facilitated. Spring ecosystems provide cool and wet microsites relative to the surrounding landscape and may act as regeneration…
Publication Type: Journal Article
The Distribution of Tree Biomass Carbon within the Pacific Coastal Temperate Rainforest, a Disproportionally Carbon Dense Forest
Year: 2024
Spatially explicit global estimates of forest carbon storage are typically coarsely scaled. While useful, these estimates do not account for the variability and distribution of carbon at management scales. We asked how climate, topography, and disturbance regimes interact across and within geopolitical boundaries to influence tree biomass carbon, using the perhumid region of the Pacific Coastal Temperate Rainforest, an infrequently disturbed carbon dense landscape, as a test case. We leveraged permanent sample plots in southeast Alaska and coastal British Columbia and used multiple quantile…
Publication Type: Journal Article
Carbon, climate, and natural disturbance: a review of mechanisms, challenges, and tools for understanding forest carbon stability in an uncertain future
Year: 2024
In this review, we discuss current research on forest carbon risk from natural disturbance under climate change for the United States, with emphasis on advancements in analytical mapping and modeling tools that have potential to drive research for managing future long-term stability of forest carbon. As a natural mechanism for carbon storage, forests are a critical component of meeting climate mitigation strategies designed to combat anthropogenic emissions. Forests consist of long-lived organisms (trees) that can store carbon for centuries or more. However, trees have finite lifespans, and…
Publication Type: Journal Article
Long-term sensitivity of ponderosa pine axial resin ducts to harvesting and prescribed burning
Year: 2024
Forest restoration treatments primarily aimed at reducing fuel load and preventing high-severity wildfires can also influence resilience to other disturbances. Many pine forests in temperate regions are subject to tree-killing bark beetle outbreaks (e.g., Dendroctonus, Ips), whose frequency and intensity are expected to increase with future climatic changes. Restoration treatments have the potential to increase resistance to bark beetle attacks, yet the underlying mechanisms of this response are still unclear. While the effect of forest restoration treatments on tree growth…
Publication Type: Journal Article
Soil microbiome feedbacks during disturbance-driven forest ecosystem conversion
Year: 2024
Disturbances cause rapid changes to forests, with different disturbance types and severities creating unique ecosystem trajectories that can impact the underlying soil microbiome. Pile burning—the combustion of logging residue on the forest floor—is a common fuel reduction practice that can have impacts on forest soils analogous to those following high-severity wildfire. Further, pile burning following clear-cut harvesting can create persistent openings dominated by nonwoody plants surrounded by dense regenerating conifer forest. A paired 60-year chronosequence of burn scar openings and…
Publication Type: Journal Article
Road fragment edges enhance wildfire incidence and intensity, while suppressing global burned area
Year: 2024
Landscape fragmentation is statistically correlated with both increases and decreases in wildfire burned area (BA). These different directions-of-impact are not mechanistically understood. Here, road density, a land fragmentation proxy, is implemented in a CMIP6 coupled land-fire model, to represent fragmentation edge effects on fire-relevant environmental variables. Fragmentation caused modelled BA changes of over ±10% in 16% of [0.5°] grid-cells. On average, more fragmentation decreased net BA globally (−1.5%), as estimated empirically. However, in recently-deforested tropical areas,…
Publication Type: Journal Article
Disentangling drivers of annual grass invasion: Abiotic susceptibility vs. fire-induced conversion to cheatgrass dominance in the sagebrush biome
Year: 2024
Invasive annual grasses are often facilitated by fire, yet they can become ecologically dominant in susceptible locations even in the absence of fire. We used an extensive vegetation plot database to model susceptibility to the invasive annual grass cheatgrass (Bromus tectorum L.) in the sagebrush biome as a function of climate and soil water availability variables. We built random forest models predicting cheatgrass presence or dominance (>15 % relative cover) under unburned (37,219 plots) and burned conditions (6340 plots). We mapped predicted probability of cheatgrass…
Publication Type: Journal Article
Landsat assessment of variable spectral recovery linked to post-fire forest structure in dry sub-boreal forests
Year: 2024
Forest disturbances such as wildfires can dramatically alter forest structure and composition, increasing the likelihood of ecosystem changes. Up-to-date and accurate measures of post-disturbance forest recovery in managed forests are critical, particularly for silvicultural planning. Measuring the live and dead vegetation post-fire is challenging because areas impacted by wildfire may be remote, difficult to access, and/or dangerous to survey. The difficulties of post-fire monitoring are compounded by the global increase in the frequency and severity of disturbances, as expansion of…
Publication Type: Journal Article
Stream chemical response is mediated by hydrologic connectivity and fire severity in a Pacific Northwest forest
Year: 2024
Large-scale wildfires are becoming increasingly common in the wet forests of the Pacific Northwest (USA), with predicted increases in fire prevalence under future climate scenarios. Wildfires can alter streamflow response to precipitation and mobilize water quality constituents, which pose a risk to aquatic ecosystems and downstream drinking water treatment. Research often focuses on the impacts of high-severity wildfires, with stream biogeochemical responses to low- and mixed-severity fires often understudied, particularly during seasonal shifts in hydrologic connectivity between hillslopes…
Publication Type: Journal Article
Prefire Drought Intensity Drives Postfire Recovery and Mortality in Pinus monticola and Pseudotsuga menziesii Saplings
Year: 2024
Increasing frequency of droughts and wildfire are sparking concerns that these compounded disturbance events are pushing forested ecosystems beyond recovery. An improved understanding of how compounded events affect tree physiology and mortality is needed given the reliance of fire management planning on accurate estimates of postfire tree mortality. In this study, we use a toxicological dose-response approach to quantify the impact of variable-intensity drought and fire on the physiology and mortality of Pinus monticola and Pseudotsuga menziesii saplings. We show that the…
Publication Type: Journal Article
Budworms, beetles and wildfire: Disturbance interactions influence the likelihood of insect-caused disturbances at a subcontinental scale
Year: 2024
Irruptive forest insects are a leading biotic disturbance across temperate and boreal forests. Outbreaks of forest insects are becoming more frequent and extensive due to anthropogenic drivers (e.g. climate and land-use), perhaps increasing the likelihood that forests will experience multiple insect-caused disturbances. Across the fire-prone Douglas-fir forests of western North America, recent outbreaks of the western spruce budworm and Douglas-fir beetle have impacted large expanses of forests, with a higher degree of overlap than expected in some ecoregions. Outbreaks of both insects are…
Publication Type: Journal Article
Stand diversity increases pine resistance and resilience to compound disturbance
Year: 2024
BackgroundDrought, fire, and insects are increasing mortality of pine species throughout the northern temperate zone as climate change progresses. Tree survival may be enhanced by forest diversity, with growth rates often higher in mixed stands, but whether tree defenses are likewise aided remains in question. We tested how forest diversity-productivity patterns relate to growth and defense over three centuries of climate change, competition, wildfire, and bark beetle attack. We used detailed census data from a fully mapped 25.6-ha forest dynamics plot in California, USA to…
Publication Type: Journal Article
Disturbance, tree mortality, and implications for contemporary regional forest change in the Pacific Northwest
Year: 2016
Tree mortality is an important demographic process and primary driver of forest dynamics, yet there are relatively few plot-based studies that explicitly quantify mortality and compare the relative contribution of endogenous and exogenous disturbances at regional scales. We used repeated observations on 289,390 trees in 3673 1 ha plots on U.S. Forest Service lands in Oregon and Washington to compare distributions of mortality rates among natural disturbances and vegetation zones from the mid-1990s to mid-2000s, a period characterized by drought, insect outbreaks, and large wildfires.…
Publication Type: Journal Article
Fire severity and cumulative disturbance effects in the post-mountain pine beetle lodgepole pine forests of the Pole Creek Fire
Year: 2016
Recent large scale mountain pine beetle (Dendroctonus ponderosae Hopkins, MPB) outbreaks have created concern regarding increased fuel loadings and exacerbated fire behavior and have prompted a desire to understand the effects of sequential disturbances on the landscape. However, previous research has focused on quantifying fuel loadings and using operational fire behavior models, rather than direct field measurements, to understand changes in fire severity following MPB. The 2012 Pole Creek Fire in central Oregon partially occurred in gray stage (8–15 years post-MPB epidemic) lodgepole pine…
Publication Type: Journal Article
Changing disturbance regimes, ecological memory, and forest resilience
Year: 2016
Ecological memory is central to how ecosystems respond to disturbance and is maintained by two types of legacies – information and material. Species life-history traits represent an adaptive response to disturbance and are an information legacy; in contrast, the abiotic and biotic structures (such as seeds or nutrients) produced by single disturbance events are material legacies. Disturbance characteristics that support or maintain these legacies enhance ecological resilience and maintain a “safe operating space” for ecosystem recovery. However, legacies can be lost or diminished as…
Publication Type: Journal Article
Effects of Drought on Forests and Rangelands in the United States: A Comprehensive Science Synthesis
Year: 2016
This assessment provides input to the reauthorized National Integrated Drought Information System (NIDIS) and the National Climate Assessment (NCA), and it establishes the scientific foundation needed to manage for drought resilience and adaptation. Focal areas include drought characterization; drought impacts on forest processes and disturbances such as insect outbreaks and wildfire; and consequences for forest and rangeland values. Drought can be a severe natural disaster with substantial social and economic consequences. Drought becomes most obvious when large-scale changes are observed;…
Publication Type: Report
Burning the legacy? Influence of wildfire reburn on dead wood dynamics in a temperate conifer forest
Year: 2016
Dynamics of dead wood, a key component of forest structure, are not well described for mixed- severity fi re regimes with widely varying fi re intervals. A prominent form of such variation is when two stand- replacing fi res occur in rapid succession, commonly termed an early- seral “reburn.” These events are thought to strongly infl uence dead wood abundance in a regenerating forest, but this hypothesis has scarcely been tested. We measured dead wood following two overlapping wildfi res in coniferdominated forests of the Klamath Mountains, Oregon (USA), to assess whether reburning (15- yr…
Publication Type: Journal Article
Forest disturbance across the conterminous United States from 1985-2012: The emerging dominance of forest decline
Year: 2016
Evidence of shifting dominance among major forest disturbance agent classes regionally to globally has been emerging in the literature. For example, climate-related stress and secondary stressors on forests (e.g., insect and disease, fire) have dramatically increased since the turn of the century globally, while harvest rates in the western US and elsewhere have declined. For shifts to be quantified, accurate historical forest disturbance estimates are required as a baseline for examining current trends. We report annual disturbance rates (with uncertainties) in the aggregate and by major…
Publication Type: Journal Article