Research Database
Displaying 141 - 160 of 230
Disturbance, tree mortality, and implications for contemporary regional forest change in the Pacific Northwest
Year: 2016
Tree mortality is an important demographic process and primary driver of forest dynamics, yet there are relatively few plot-based studies that explicitly quantify mortality and compare the relative contribution of endogenous and exogenous disturbances at regional scales. We used repeated observations on 289,390 trees in 3673 1 ha plots on U.S. Forest Service lands in Oregon and Washington to compare distributions of mortality rates among natural disturbances and vegetation zones from the mid-1990s to mid-2000s, a period characterized by drought, insect outbreaks, and large wildfires.…
Publication Type: Journal Article
Climate-driven changes in forest succession and the influence of management on forest carbon dynamics in the Puget Lowlands of Washington State, USA
Year: 2016
Projecting the response of forests to changing climate requires understanding how biotic and abiotic controls on tree growth will change over time. As temperature and interannual precipitation variability increase, the overall forest response is likely to be influenced by species-specific responses to changing climate. Management actions that alter composition and density may help buffer forests against the effects of changing climate, but may require tradeoffs in ecosystem services. We sought to quantify how projected changes in climate and different management regimes would alter the…
Publication Type: Journal Article
Forest disturbance across the conterminous United States from 1985-2012: The emerging dominance of forest decline
Year: 2016
Evidence of shifting dominance among major forest disturbance agent classes regionally to globally has been emerging in the literature. For example, climate-related stress and secondary stressors on forests (e.g., insect and disease, fire) have dramatically increased since the turn of the century globally, while harvest rates in the western US and elsewhere have declined. For shifts to be quantified, accurate historical forest disturbance estimates are required as a baseline for examining current trends. We report annual disturbance rates (with uncertainties) in the aggregate and by major…
Publication Type: Journal Article
Impact of anthropogenic climate change on wildfire across western US forests
Year: 2016
Increased forest fire activity across the western continental United States (US) in recent decades has likely been enabled by a number of factors, including the legacy of fire suppression and human settlement, natural climate variability, and human-caused climate change. We use modeled climate projections to estimate the contribution of anthropogenic climate change to observed increases in eight fuel aridity metrics and forest fire area across the western United States. Anthropogenic increases in temperature and vapor pressure deficit significantly enhanced fuel aridity across western US…
Publication Type: Journal Article
Fire severity and cumulative disturbance effects in the post-mountain pine beetle lodgepole pine forests of the Pole Creek Fire
Year: 2016
Recent large scale mountain pine beetle (Dendroctonus ponderosae Hopkins, MPB) outbreaks have created concern regarding increased fuel loadings and exacerbated fire behavior and have prompted a desire to understand the effects of sequential disturbances on the landscape. However, previous research has focused on quantifying fuel loadings and using operational fire behavior models, rather than direct field measurements, to understand changes in fire severity following MPB. The 2012 Pole Creek Fire in central Oregon partially occurred in gray stage (8–15 years post-MPB epidemic) lodgepole pine…
Publication Type: Journal Article
Changing disturbance regimes, ecological memory, and forest resilience
Year: 2016
Ecological memory is central to how ecosystems respond to disturbance and is maintained by two types of legacies – information and material. Species life-history traits represent an adaptive response to disturbance and are an information legacy; in contrast, the abiotic and biotic structures (such as seeds or nutrients) produced by single disturbance events are material legacies. Disturbance characteristics that support or maintain these legacies enhance ecological resilience and maintain a “safe operating space” for ecosystem recovery. However, legacies can be lost or diminished as…
Publication Type: Journal Article
Incorporating Anthropogenic Influences into Fire Probability Models: Effects of Human Activity and Climate Change on Fire Activity in California
Year: 2016
The costly interactions between humans and wildfires throughout California demonstrate the need to understand the relationships between them, especially in the face of a changing climate and expanding human communities. Although a number of statistical and process-based wildfire models exist for California, there is enormous uncertainty about the location and number of future fires, with previously published estimates of increases ranging from nine to fifty-three percent by the end of the century. Our goal is to assess the role of climate and anthropogenic influences on the state’s fire…
Publication Type: Journal Article
Effects of Drought on Forests and Rangelands in the United States: A Comprehensive Science Synthesis
Year: 2016
This assessment provides input to the reauthorized National Integrated Drought Information System (NIDIS) and the National Climate Assessment (NCA), and it establishes the scientific foundation needed to manage for drought resilience and adaptation. Focal areas include drought characterization; drought impacts on forest processes and disturbances such as insect outbreaks and wildfire; and consequences for forest and rangeland values. Drought can be a severe natural disaster with substantial social and economic consequences. Drought becomes most obvious when large-scale changes are observed;…
Publication Type: Report
The cost of climate change: Ecosystem services and wildland fires
Year: 2015
Little research has focused on the economic impact associated with climate-change induced wildland fire on natural ecosystems and the goods and services they provide. We examine changes in wildland fire patterns based on the U.S. Forest Service's MC1 dynamic global vegetation model from 2013 to 2115 under two pre-defined scenarios: a reference (i.e., business-as-usual) and a greenhouse gas mitigation policy scenario. We construct a habitat equivalency model under which fuels management activities, actions commonly undertaken to reduce the frequency and/or severity of wildland fire, are used…
Publication Type: Journal Article
Development and application of a probabilistic method for wildfire suppression cost modeling
Year: 2015
Wildfire activity and escalating suppression costs continue to threaten the financial health of federal land management agencies. In order to minimize and effectively manage the cost of financial risk, agencies need the ability to quantify that risk. A fundamental aim of this research effort, therefore, is to develop a process for generating risk-based metrics for annual suppression costs. Our modeling process borrows from actuarial science and the process of assigning insurance premiums based on distributions for the frequency and magnitude of claims, generating parameterized probability…
Publication Type: Journal Article
Native and exotic plant species respond differently to wildfire and prescribed fire as revealed by meta-analysis
Year: 2015
Questions: Wildfire is a natural disturbance that shapes vegetation characteristics worldwide, while prescribed fire is increasingly used to modify vegetation composition and structure. Due to invasion of many ecosystems by exotic species, a concern of land managers is whether wildfire and prescribed fire alter plant communities in favour of exotics. We assessed the global literature describing community-level responses of native and exotic species groups to wildfire and prescribed fire and characterized the geographic and temporal scope of the data to inform research needs. Location:…
Publication Type: Journal Article
Restoration impacts on fuels and fire potential in a dryland tropical ecosystem dominated by the invasive grass Megathyrsus maximus
Year: 2015
Ecological restoration often attempts to promote native species while managing for disturbances such as fire and non-native invasions. The goal of this research was to investigate whether restoration of a non-native, invasive Megathyrsus maximus (guinea grass) tropical grassland could simultaneously promote native species and reduce fire potential. Megathyrsus maximus was suppressed with herbicide, and three suites of native species—each including the same groundcover and shrub, and one of three tree species—were outplanted in a randomized, complete block design that also included herbicide…
Publication Type: Journal Article
Interactions among spruce beetle disturbance, climate change and forest dynamics captured by a forest landscape model
Year: 2015
The risk of bark beetle outbreaks is widely predicted to increase because of a warming climate that accelerates temperature-driven beetle population growth and drought stress that impairs host tree defenses. However, few if any studies have explicitly evaluated climatically enhanced beetle population dynamics in relation to climate-driven changes in forest composition and structure that may alter forest suitability for beetle infestation. We synthesized current understanding of the interactions among climate, spruce beetles (Dendroctonus rufipennis) and forest dynamics to parameterize and…
Publication Type: Journal Article
Forest disturbance accelerates thermophilization of understory plant communities
Year: 2015
1. Climate change is likely to shift plant communities towards species from warmer regions, a processtermed ‘thermophilization’. In forests, canopy disturbances such as fire may hasten this processby increasing temperature and moisture stress in the understory, yet little is known about the mechanismsthat might drive such shifts, or the consequences of these processes for plant diversity.2. We sampled understory vegetation across a gradient of disturbance severity from a large-scalenatural experiment created by the factorial combination of forest thinning and wildfire in California.Using…
Publication Type: Journal Article
Developing a post-processor to link the Forest Vegetation Simulator (FVS) and the Fuel Characteristic Classification System (FCCS)
Year: 2015
In this project, we developed a Forest Vegetation Simulator (FVS, JFSP Project #) post-processor (FVS2FCCS) to convert FVS simulated treelist and surface fuel data into Fuel Characteristics Classification System (FCCS, JFSP Project #98-1-1-06) fuelbed format (.xml) that can be read and processed by the FCCS to create estimates of surface fire behavior, including reaction intensity (Btu ft-2 min-1 or kJ m2), rate-of-spread (ft min-1 or m min-1), and flame length (ft or m). Post-processors are programs that extend FVS modeling, reporting, and display capabilities. Our post-processor allows…
Publication Type: Report
Modeling wildfire regimes in forest landscapes: abstracting a complex reality
Year: 2015
Fire is a natural disturbance that is nearly ubiquitous in terrestrial ecosystems. The capacity to burn exists virtually wherever vegetation grows. In some forested landscapes, fire is a principal driver of rapid ecosystem change, resetting succession ( McKenzie et al. 1996a ) and changing wildlife habitat (Cushman et al. 2011 ), hydrology ( Feikema et al. 2013 ), element cycles ( Smithwick 2011 ), and even landforms (Pierce et al. 2004 ). In boreal forests, for example, recurring wildfi res are the main cause of compositional and spatial patterns ( Wein and MacLean 1983 ), where a fi re-…
Publication Type: Book Chapter
Modeling the direct effect of salvage logging on long-term temporal fuel dynamics in dry-mixed conifer forests
Year: 2015
Salvage logging has been proposed to reduce post-fire hazardous fuels and mitigate re-burn effects, but debate remains about its effectiveness when considering fuel loadings are dynamic, and re-burn occurrence is stochastic, in time. Therefore, evaluating salvage loggings capacity to reduce hazardous fuels requires estimating fuel loadings in unmanipulated and salvaged stands over long time periods. We sampled for snag dynamics, decomposition rates, and fuel loadings within unmanipulated high-severity portions of 7 fires, spanning a 24-year chronosequence, in dry-mixed conifer forests of…
Publication Type: Journal Article
A review of the challenges and opportunities in estimating above ground forest biomass using tree-level models
Year: 2015
Accurate biomass measurements and analyses are critical components in quantifying carbon stocks and sequestration rates, assessing potential impacts due to climate change, locating bio-energy processing plants, and mapping and planning fuel treatments. To this end, biomass equations will remain a key component of future carbon measurements and estimation. As researchers in biomass and carbon estimation, we review the present scenario of aboveground biomass estimation, focusing particularly on estimation using tree-level models and identify some cautionary points that we believe will improve…
Publication Type: Journal Article
Modeling spatial and temporal dynamics of wind flow and potential fire behavior following a mountain pine beetle outbreak in a lodgepole pine forest
Year: 2015
Patches of live, dead, and dying trees resulting from bark beetle-caused mortality alter spatial and temporal variability in the canopy and surface fuel complex through changes in the foliar moisture content of attacked trees and through the redistribution of canopy fuels. The resulting heterogeneous fuels complexes alter within-canopy wind flow, wind fluctuations, and rate of fire spread. However, there is currently little information about the potential influence of different rates and patterns of mortality on wind flow and fire behavior following bark beetle outbreaks. In this study, we…
Publication Type: Journal Article
Representing climate, disturbance, and vegetation interactions in landscape models
Year: 2015
The prospect of rapidly changing climates over the next century calls for methods to predict their effects on myriad, interactive ecosystem processes. Spatially explicit models that simulate ecosystem dynamics at fine (plant, stand) to coarse (regional, global) scales are indispensable tools for meeting this challenge under a variety of possible futures. A special class of these models, called landscape models (LMs), simulates dynamics at intermediate scales where many critical ecosystem processes interact. The complicated dependencies among climate, disturbance, and vegetation present a…
Publication Type: Journal Article
Pagination
- First page
- Previous page
- …
- 6
- 7
- 8
- 9
- 10
- …
- Next page
- Last page